
Regression Test Selection for Database Applications 141

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter VIII

Regression Test Selection
for Database Applications

Ramzi A. Haraty, Lebanese American University, Lebanon

Nashat Mansour, Labanese American University, Lebanon

Bassel A. Daou, University of Ottawa, Canada

ABSTRACT
Database applications features such as Structured Query Language programming, excep-
tion handling, integrity constraints, and table triggers pose difficulties for maintenance
activities, especially for regression testing that follows modifying database applications.
In this chapter, we address these difficulties and propose a two-phase regression testing
methodology. In phase 1, we explore control flow and data flow analysis issues of database
applications. Then, we propose an impact analysis technique that is based on dependencies
that exist among the components of database applications. This analysis leads to selecting
test cases from the initial test suite for regression testing the modified application. In phase
2, we propose two algorithms for reducing the number of regression test cases. The Graph
Walk algorithm walks through the control flow graph of database modules and selects a
safe set of test cases to retest. The Call Graph Firewall algorithm uses a firewall for the
inter-procedural level. Our experience with this regression testing methodology shows that
the impact analysis technique is adequate for selecting regression tests and that phase 2
techniques can be used for further reduction in the number of these tests.

INTRODUCTION
Software maintenance involves changing programs due to errors, alterations in user

requirements or changes in the hardware/software environment. Regression testing is an
important activity of software maintenance, which ensures that the modified software still
satisfies its intended requirements (Hartmann & Robson, 1989). It attempts to revalidate
modified software and ensure that new errors are not introduced into the previously tested

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB10024

IDEA GROUP PUBLISHING

This chapter appears in the book, Advanced Topics in Database Research, Volume 3, edited by Keng Siau. Copyright
© 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group
Inc. is prohibited.

142 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

code. Regression testing involves four issues: change impact identification, test suite main-
tenance, test strategy, and test case selection. Change impact identification involves locating
all the modules and other program segments that are affected by the modification. Test suite
maintenance attempts to keep the test suite status current and reusable for future revalidation.
Test strategy involves finding a test sequence for retesting the software. Test case selection
attempts to reduce the cost of regression testing by selecting a subset of the test suite that
has been used during the application development. This subset of tests is then used to test
modified programs (Rothermel & Harold, 1998).

In database applications a number of new features are supported, such as Structured
Query Language (SQL) statements, table constraints, exception handling, and table triggers.
These features introduce new difficulties that hinder regression test selection. In this work,
we concentrate on impact analysis and test selection for SQL-based systems. Regression
testing is necessary for assuring the quality of a system after modifying it. Ad hoc regres-
sion testing involves either rerunning all the test cases that are included in the test suite
determined during the initial development of software (Select-All approach) or selecting a
random subset of this initial test suite (Select-Random approach). But, the Select-Random
approach is unreliable, since it might miss selecting test cases that reveal adverse effects
of modifications. Hence, the Select-Random approach might compromise the quality of
the modified system. On the other hand, the Select-All approach is expensive in terms of
time and cost, since it usually includes many test cases that do not reveal the impact of the
modification made to the system. Therefore, it is important to use regression testing methods
that reduce the number of selected test cases in order to save time and money, especially for
large software systems, while maintaining the quality of the system (Wong et al., 1997).

SQL, the standard query language, is a declarative language used for the manipulation
of table data in database applications. It stands as the heart of database applications mod-
ules (ISO/IEC 9075, 1992). The usage of SQL in a procedural context has its implications.
We categorize these implications into three categories: control dependencies, data flow
dependencies, and component dependencies. The nature of SQL and the existence of table
constraints lead to using exception handling techniques in database modules. Exception
handling complicates control flow dependencies between statements in database modules.
This complexity should be handled in the process of applying control flow-based regression
testing techniques. Moreover, table triggers firings because of modifying SQL statements
create implicit inter-modular control flow dependencies between modules. These dependen-
cies should be explored for performing inter-module regression testing.

The manipulation of database tables by different modules, using SQL, leads to a state-
based behavior of modules. It also creates data flow dependencies between the modules.
The dynamic behavior of SQL, in which the exact table rows manipulated is not known
until run-time, makes it very difficult to trace such data dependencies. Furthermore, SQL
manipulates database components such as tables and views. These facts create component
dependencies between the various components handled by SQL statements and the modules
in which the statements are located. These component dependency relations are transitive.
Whenever a change is made to one component, this transitivity introduces a ripple effect
of change.

In this chapter, we propose a new two-phase methodology for regression testing SQL-
based database applications. Phase 1 involves detecting modifications and performing change
impact analysis. The impact analysis technique localizes the effects of change, identifies all
the affected components, and selects a preliminary set of test cases that traverse modified

23 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the product's webpage:

www.igi-global.com/chapter/regression-test-selection-

database-applications/4358?camid=4v1

This title is available in InfoSci-Books, InfoSci-Database

Technologies, Library Science, Information Studies, and

Education, InfoSci-Library and Information Science.

Recommend this product to your librarian:

www.igi-global.com/e-resources/library-

recommendation/?id=1

Related Content

Energy and Latency Efficient Access of Wireless XML Stream
Jun Pyo Park, Chang-Sup Park and Yon Dohn Chung (2010). Journal of Database

Management (pp. 58-79).

www.igi-global.com/article/energy-latency-efficient-access-
wireless/39116?camid=4v1a

INDUSTRY AND PRACTICE: What’s New? The Challenges of Emerging

Information Technologies
Albert L. Lederer and John “Skip” Benamati (1998). Journal of Database

Management (pp. 33-34).

www.igi-global.com/article/industry-practice-new-challenges-
emerging/51191?camid=4v1a

The Management of Evolving Engineering Design Constraints
T. W. Carnduff and J. S. Goonetillake (2006). Database Modeling for Industrial Data

Management: Emerging Technologies and Applications (pp. 62-114).

www.igi-global.com/chapter/management-evolving-engineering-design-
constraints/7889?camid=4v1a

http://www.igi-global.com/chapter/regression-test-selection-database-applications/4358?camid=4v1
http://www.igi-global.com/chapter/regression-test-selection-database-applications/4358?camid=4v1
http://www.igi-global.com/e-resources/library-recommendation/?id=1
http://www.igi-global.com/e-resources/library-recommendation/?id=1
http://www.igi-global.com/article/energy-latency-efficient-access-wireless/39116?camid=4v1a
http://www.igi-global.com/article/energy-latency-efficient-access-wireless/39116?camid=4v1a
http://www.igi-global.com/article/industry-practice-new-challenges-emerging/51191?camid=4v1a
http://www.igi-global.com/article/industry-practice-new-challenges-emerging/51191?camid=4v1a
http://www.igi-global.com/chapter/management-evolving-engineering-design-constraints/7889?camid=4v1a
http://www.igi-global.com/chapter/management-evolving-engineering-design-constraints/7889?camid=4v1a

Representing Classes of Things and Properties in General in Conceptual

Modelling: An Empirical Evaluation
Graeme Shanks, Daniel Moody, Jasmina Nuredini, Daniel Tobin and Ron Weber

(2010). Journal of Database Management (pp. 1-25).

www.igi-global.com/article/representing-classes-things-properties-
general/42083?camid=4v1a

http://www.igi-global.com/article/representing-classes-things-properties-general/42083?camid=4v1a
http://www.igi-global.com/article/representing-classes-things-properties-general/42083?camid=4v1a

