
An Efficient Cache Replacement Strategy for the

Hybrid Cache Consistency Approach

Aline Zeitunlian and Ramzi A. Haraty

 Abstract---Caching was suggested as a solution for reducing

bandwidth utilization and minimizing query latency in mobile

environments. Over the years, different caching approaches have

been proposed, some relying on the server to broadcast reports

periodically informing of the updated data while others allowed the

clients to request for the data whenever needed. Until recently a

hybrid cache consistency scheme Scalable Asynchronous Cache

Consistency Scheme SACCS was proposed, which combined the two

different approaches benefits’ and is proved to be more efficient and

scalable. Nevertheless, caching has its limitations too, due to the

limited cache size and the limited bandwidth, which makes the

implementation of cache replacement strategy an important aspect for

improving the cache consistency algorithms. In this paper, we

proposed a new cache replacement strategy, the Least Unified Value

strategy (LUV) to replace the Least Recently Used (LRU) that

SACCS was based on. This paper studies the advantages and the

drawbacks of the new proposed strategy, comparing it with different

categories of cache replacement strategies.

 Keywords---Cache consistency, hybrid algorithm, and mobile

environments

I. INTRODUCTION

 In mobile computing environments, where low powered devices are

used to access and query databases over relatively low-bandwidth

wireless channels, caching frequently accessed data objects will

reduce bandwidth usage and delays perceived by users.

 In mobile environments, caching is more challenging due to the

mobility of the users and the disconnected modes, which arise due to

the battery power saving measures or the unpredictable disconnection

of wireless networks. However, having a copy of the data in the

cache is not sufficient; the cache should also provide the users a fresh

data on each hit.

 Broadcasting was assumed to be an effective method for data

dissemination, which consumes little bandwidth. Several methods for

data distribution had been suggested to guarantee the cache

consistency in mobile environments. Some used stateless servers to

maintain the mobile environment [1][2][3], others stateful servers [4].

Combining each approaches positive features, the Scalable

Asynchronous Cache Consistency Scheme (SACCS) maintenance

scheme was proposed. It was based on the Least-Recently-Used

(LRU) cache replacement strategy [5][6].

 Aline Zeitunlian is with the Department of Computer Science and

Mathematics at the Lebanese American University, P.O. Box 13-5053
Chouran, Beirut, Lebanon 1102 2801. Email: aline.zeitunlian@lau.edu.lb

 Ramzi A. Haraty is with the Department of Computer Science and

Mathematics at the Lebanese American University, P.O. Box 13-5053
Chouran, Beirut, Lebanon 1102 2801. Phone: 961 1 867620, Fax: 961 1

867098, Email: rharaty@lau.edu.lb.

 To support the cache consistency maintenance algorithms, it is

important to have an efficient cache replacement policy, for after all

mobile units have limited disk storage and not all data objects can be

cached. In this work, we propose the least-unified value algorithm

(LUV) [7] to be used with the SACCS cache consistency

maintenance scheme and compare it with the other four cache

replacement strategy categories. LUV is a cache replacement

technique that associates a value to each object in the cache and when

needed replaces it with the object with the smallest value. This policy

considers the reference potential and the retrieval cost of the data

object per unit size.

 This work is organized into six sections. Section 2 provides a

literature review of the approaches proposed for cache consistency,

invalidation strategies, and replacement policies of mobile

environments. Section 3 describes the SACCS maintenance

approach. In section 4 we present SACCS and LUV and the other

cache replacement techniques. Section 5 presents the experimental

results of the LUV cache strategy with SACCS as compared to the

four different class strategies. Finally, in section 6 we provide a

conclusion and discuss the future work.

II. LITERATURE REVIEW

 With the development of wireless communications a new model of

distributed computing was introduced. It is more challenging and

difficult than the other client/server based environments, since users

can connect from different access points and may stay connected

while on the move, at the same time its performance relies on the

wireless bandwidth communication and the battery power.

 A mobile unit (MU) communicates via an MSS (Mobile Support

Stations) over a wireless channel. The wireless channel has upload

channel and download channel. MUs use the upload channel to

submit queries to the server, while the MSSs disseminate information

or respond to the MU via the download channel. Each MSS is

responsible for the MUs within a given geographical or logical area,

known as a cell. Therefore, when an MU leaves a cell serviced by an

MSS, a handoff protocol transfers the responsibility to the MSS of

the new cell. This is shown in Figure 1.

Figure 1. Wireless data communication system architecture [6].

 A mobile unit may move through the cells and may disconnect

from the network. After an unknown time of disconnection an MU

can reconnect to a different MSS.

mailto:aline.zeitunlian@lau.edu.lb
mailto:rharaty@lau.edu.lb

 For delivering data there exist two different systems; push-based

and pull-based [8]. In push-based systems, the server decides to send

information either periodically or sporadically to the clients without

waiting for their requests. In pull-based systems, clients send

messages to the server to request for data. Broadcasting minimizes

the number of uplink requests. By broadcasting invalidation reports

(IR)s clients are notified about the cached items changes’. Yet a

client may miss IRs when disconnected during broadcast and this has

its drawbacks.

 To maintain cache consistency three different types of algorithms

were suggested. In stateless approaches, an MSS has no knowledge

of MUs cache contents. The MSS periodically sends invalidation

reports to the MUs. While at an MU, a data object request cannot be

served until the next IR. The advantage for stateless approaches is

that they are easy to manage. Their drawbacks are: they are not

scalable to large database; their access latency on average is always

longer than half of the broadcast period and finally at reconnection

after a long disconnection all cache entries are deleted, even the valid

data objects. The stateful approaches were suggested by Barbara and

Imielinski [1][3][9][10][11][12][13][14]. In stateful approaches, an

MSS keeps the state of each object for every MU cache and

broadcasts their IRs only. Kahol et al. proposed a scheme that

minimizes the overhead for MUs to validate their caches when

reconnected, using stateless servers and asynchronous invalidation

messages [4].

 As for the hybrid approach Scalable Asynchronous Cache

Consistency Scheme (SACCS), the MSS identifies only the data

objects that might be valid in MU caches. It does not broadcast IRs

periodically. The uncertain and ID-only states of an MU allow

handling of sleep-wakeup patterns and mobility. All these improve

the broadcast channel efficiency [5][6][15].

 A cache replacement strategy decides which object to evict from

the cache when no space is available to store additional objects. It is

based on several factors: recency, frequency, cost for fetching and

size. To determine the effectiveness of a replacement strategy, certain

metrics are measured such as the cache hit ratio, byte hit ratio,

delays. Xu and Hu’s proposed the (Min_SAUD) [16], Yin et al.

presented a generalized target-driven cache replacement policy for

mobile environments [17]. [15][18][19] suggested cache consistency

algorithms that integrated cache replacement and prefetching

algorithms to efficiently maintain the read-only transactions data

requirements for mobile hybrid data delivery environments. The first

presented the Greedy Dual Utility cache replacement policy and the

second Multi-version integrated caching and prefetching policy. A

different replacement strategy than the conventional ones was

suggested by Santhosh et al. which was based on semantic [20].

 Web caching, like mobile data caching, aims to reduce network

traffic, server load, access delays and is again impacted by the

replacement strategy. Rabinovich and Spatscheck presented an

overview of web caching and replications [21]. The first

classification of replacement strategies for web caching was given by

Aggarwal et al. who proposed three categories: direct extensions of

traditional strategies, key-based and function-based [22]. Later,

Podlipnig and Boszormenyi classified them as follows: recency-

based, frequency-based, recency/frequency-based, function-based

and randomized strategies [23]. Certainly, each class of strategies has

its own advantages and disadvantages.

III. SCALABLE ASYNCHORONOUS CACHE CONSISTENCY

SCHEME (SACCS)

 In SACCS, the MSS is only responsible for identifying the data

objects of the database that might be valid in the MU caches. To save

downlink bandwidth usage, SACCS also reduces the periodic IR

messages broadcasted. In addition to these two features, SACCS

added two different states for data objects in MU caches, they are

uncertain and ID-only, that allow handling of random sleep-wakeup

patterns and mobility.

 In SACCS, they used the LRU replacement algorithm [5][6] and it

was for systems with read-only transactions.

A. The SACCS Cache Management

 In the server, each data object has a flag bit, which changes when

the data is retrieved to indicate that a valid copy is available in the

cache. Consequently, when this data object is updated, the server

immediately broadcasts its IR and resets the flag bit to indicate that

the cached data object is not valid anymore. Therefore, until the flag

is reset no update requires broadcast of IR.

 At an IR broadcast, an MU is either in an awake or in a sleep state.

If the MU is awake then the state is changed from valid to ID-only. If

the MU is disconnected, then the IRs are ignored and data are

unaffected. However, when an MU wakes up after a disconnection,

all valid state cached data objects are changed to uncertain state.

 In SACCS using the LRU, every time a data is cached or is already

found in the cache, it is moved to the head of the cache list. In case

the cache is full and a new data needs to be cached, to accommodate

it and make enough space data entries are deleted from the tail of the

cache list. In case the cache needs to be refreshed, to validate the data

of the cache, all data with uncertain or ID-only state are allocated

their original places and if there is not enough space, then data entries

found at the tail are removed.

IV. SACCS AND THE CACHE REPLACEMENT POLICIES

 In general, cache replacement strategies affect hit rates; however,

they are not the limiting factor for caching. Each strategy has certain

targets and defines its metric.

 While SACCS is based on (LRU), in this work; we examine the

SACCS using a value-based function, the LUV, which emphasizes

the reference information of the object as well as considering the

fetch cost of the object and its size.

A. A Value-based Function: Least-Unified Value

 The LUV replacement algorithm is based on time of all past

references and the number of references [7]. It uses the complete

reference history. The only weakness of this strategy is in how to

consider the parameter tuning. The LUV replacement strategy is

being a value-based strategy, calculates for every data object i a value

V(i), defined by the following formula

 V(i) = W(i).p(i)

where W(i) is the relative cost to fetch the object from its original

server, calculated as the ratio of fetching cost of object i from the

server (c(i)) and its size (s(i)).

 W(i) = c(i)/s(i)

while p(i) is the “probability” that object i is referenced in the future

and is calculated as

 p(i) = 



fi

k

kc tt
1

)(

tc being the current time and tk the oldest request time in a window of

k request times. To give more weight to more recent references F(x)

should be a decreasing factor. A possibility for the function is F(x) =

x

2

1
 (0 ≤ λ ≤ 1). Note that λ converging to 1 reduces it to LRU

where only the last reference time is considered, while λ converging

to 0 reduces it to a weighted LFU, counting the number of previous

references.

B. The New Algorithm for SACCS and its Description

 The algorithm first checks if the data is available in the cache and

in valid state then the time of the last reference is updated and the

new value calculated. Adding this new value to the heap, it restores

the heap property. If the data is available in cache with uncertain

state, it calculates the new value at the new referenced time, and then

sends a message to check the validity of the data. In case the data is

in ID-only state or not available in the cache it fetches the data and its

value from the server, adds the time of the last reference and

calculates the new value, inserting it to the heap, it adjusts the heap.

If there is not enough space to download the data then it finds the

data object with the lowest value and replaces it with the new data

object, adds the value of the newly introduced data object and

restores the heap. The algorithm for the new proposed cache

replacement strategy is shown in Figure 2.

Figure 2. New SACCS Algorithm.

 LUV uses the heap structure to maintain the ordering of data

according to their LUV values. The root of the heap has the lowest

value. Therefore, the object found at the root of the heap is the object

to be deleted. This is repeated until we get enough space for the

incoming data object. Every deletion and insertion operation has a

complexity of O(log2N). For every object’s updated value, the heap is

adjusted. The time complexity for every adjustment operation is

O(log2N).

C. The Other Cache Replacement Strategies

 To examine the efficiency of the proposed strategy LUV, we

compared it with four different cache replacement algorithms, each

belonging to a different classification of cache replacement strategies.

A Recency-Based Strategy: Least Recently Used (LRU)

 This class’ strategies in general replace objects that were used least

recently. Their implementation is fairly easy. The LRU was already

used for SACCS.

A Frequency-Based Strategy: Least Frequently Used (LFU)

 This class’ strategies replace data objects that were used least

frequently. They are popular and easy to be implemented. In the LFU

cache replacement policy, the frequency of references for each data

entry in the mobile user cache list is counted. The tail of the list

contains the data with the minimum number of accesses.

A Recency/Frequency Based Strategy: Least Recently/Frequently

Used (LRFU)

 The LRFU policy combines the two policies (LRU and LFU) and

results in a policy that is better than both. To each data object it

assigns a value. Every time the data object is referenced a weighing

function F(x) is calculated which considers the data objects reference

time span from the past to the current [24].

A Randomized Strategy: Random

 It is different from the previous strategies, a nondeterministic

approach. The random strategy uses randomized decisions to remove

and replace an object from the cache [23]. It does not need special

data structure for inserting or deleting object and is simple to

implement. Its disadvantage is that it cannot be evaluated and

different simulation runs will give different results.

V. PERFORMANCE EVALUATION

A. Environment

 We tested the performance of our model by means of a simulated

environment in C++. For our simulation we considered a single cell

environment with 100 MUs as clients and each MU with identical

cache size 300. We had also considered 1000 data objects of five

types of access of random object sizes (bytes) and variable average

update interval (sec).

 The sleep wakeup process is modeled as two-state Markov chain

with MUs alternating between sleep and awake states. Each MU has

a sleep-wakeup period randomly picked from the set of values (500,

1000, 1500, 2000, 2500) sec. The sleep ratio is picked from (0.1, 0.3,

0.5, 0.7, 0.9) and the request arrival rate from (1/10, 1/60, 1/110,

1/160, 1/210). When an MU is in the sleep state, all requests are

ignored. The query delay is counted as 0, when a requested data

object is available at the MU. Otherwise, the query delay is counted

as the time interval between the query response and query initiation.

An uplink is counted when a query is retrieved from the original

station through an uplink channel. A zipf-like distribution for MU

access pattern is used in the simulation with z equal to 1. The update

process for a data object and the arrival requests follow a Poisson

distribution. The channel is used for downlink and uplink data

transmission with a bandwidth 1250 bps. Uplink message size is

assumed 64 bytes and downlink message size as 64 bytes. As for the

function parameters used for the LUV, we considered λ to be equal to

0.5 and considered variable and random fetching cost and size ratios.

B. Simulation Results

 The performance of SACCs based on LUV value-based cache

replacement policy is evaluated and compared to SACCS based on

LRU, LFU, LRFU and Random representative cache replacement

policies of the remaining other four categories of strategies.

 When an MU receives a query, if the queried data object is valid in

the cache, a cache hit is counted, and no uplink is needed for the

query. The higher the hit ratio is the fewer the uplink per query.

Figure 3. Total Hit for Simulation.

0

10000

TOTAL HIT

TOTAL HIT

dx = data object,

Mx = message for the data object,

dy = data object that will be replaced, LUV= value calculated

for the data object,

L is the minimum value.

Case 1: dx is in cache and valid

then calculate the LUV value

return dx to the application.

Case 2: dx is in cache and uncertain

then calculate the new LUV value

send uncertain message to the server.

Case 3: dx is not cached or ID-only

 Send cache missing message to the server.

Wait for message Mx to appear at downlink channel

If Mx is confirmation then set the state of dx as valid

Return dx to the application,

If Mx is the data item dx then

While there is not enough space for dx

Find min value L = Minimum LUV value for data

object y belonging to the cache

Evict the dy such that LUV Value of y = L;

Keep value of the evicted data object

End while

Bring Mx into cache

Calculate its LUV value

Return Mx to the application.

Table 1. Total Query, Total Hit, Total Miss.

TOTAL

QUERY

TOTAL

HIT

TOTAL

MISS

LRU 16751 5086 11666

LFU 16688 4172 12519

LRFU 16695 4491 12206

LUV 16726 5126 11599

Random 16567 4695 11871

 As it is shown in Table 1, the total hit for LUV is the highest.

Figure 4. shows that the LUV cache replacement policy improves

performance since the data requested is available in the cache, it will

reduce the IR message broadcasts, avoiding the unnecessary traffic

and retaining the valid data objects of the MU.

Figure 4. Number of Hits vs. Time.

Figure 5. Number of Misses vs. Time.

 The results of the number of misses and number of hits (Figure 4.

and Figure 5) and the miss and hit ratios (Figure 6. and Figure 7) are

depicted for the five cache replacement strategies, over eight

simulation time units with an interval of 50000 of simulation time.

The miss (hit) ratio is the ratio of the number of unfound (found) data

items in the cache over the number of all requested data. The worst

hit ratios performance is for LFU, while LRU and LUV have the best

hit ratio performances interchangeably. However, on an average the

LUV outperforms the LRU.

Figure 6. Miss Ratio vs. Time.

Figure 7. Hit Ratio vs. Time.

 A delay is the period of time between the time a request is issued

and the time the result is received by the mobile application user. The

average access delay is an important measurement of system

performance. A shorter delay implies better performance. The total

delay results of our simulation are presented in Figure 8. and the

average delay results in Figure 9.

 It is obvious that the tradeoff between energy cost and access

latency is a hard one, we can decrease the uplink and download

messages or improve the access latency to decrease the energy cost.

500

800

1100

1400

1700

2000

2300

5
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

To
ta

l H
it

Total Hit

LRU

LFU

LRFU

LUV

RANDOM

4000

4250

4500

4750

5000

5250

5500

5
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

To
ta

l M
is

s

Total Miss

lru

lfu

lrfu

luv

random

0.65

0.75

0.85

0.95

5
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

M
is

s
ra

ti
o

Miss Ratio vs. Time

LRU

LFU

LRFU

LUV

RANDOM

0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34

5
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

H
it

 R
at

io

Hit Ratio vs. Time

LRU

LFU

LRFU

LUV

Random

Figure 8. Total Delay vs. Time.

Figure 9. Average Delay Vs. Time.

 In Figure 10. based on the Table 2. results show that LUV results in

less bytes/query, outperforming the other four cache replacement

strategies. This is due to the fact that LUV not only considers the

most recent data information but also future references according to

their fetch cost. The decision of evicting data objects with low

fetching costs is a smart way to save power consumption at a later

stage.

Figure 10. Bytes per Query.

Table 2. Bytes per Query.

 BYTES/QUERY

LRU 793.541

LFU 978.204

LRFU 920.849

LUV 791.037

Random 859.57

 In Figure 11. based on the results in the Table 3. LUV has the

lowest ratio for data download/query. This means the value-based

cache replacement strategy LUV is quite efficient and its selection of

the victims set had saved unnecessary downloads. Since the

algorithm favors the data objects that have low fetch cost values, it

has saved fetching costs, which implies that it is less power

consuming.

Figure 11. Data Download per Query.

Table 3. Data Download per Query.

DATA

DOWNLOAD/QUERY

LRU 0.541938

LFU 0.647951

LRFU 0.609404

LUV 0.534617

Random 0.585622

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

5
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

To
ta

l D
e

la
y

Total Delay

LRU

LFU

LRFU

LUV

Random

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

5
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

A
ve

ra
ge

 D
e

la
y

Average Delay vs. Time

LRU

LFU

LRFU

LUV

RANDOM

010020030040050060070080090010001100

BYTES/QUERY

BYTES/QUERY

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

DATA
DOWNLOAD/QUERY

DATA
DOWNLOAD/QU
ERY

VI. CONCLUSION

 Caching is a good solution for mobile environments that are

characterized with several constraints such as low bandwidth for

uplink, irregular connections, and limited client resources. However,

caching has some limitations too. Several approaches had been

suggested to maintain cache consistency. In the stateful approaches

the server knows what data was cached in which mobile unit while in

stateless approaches the server is unaware of the information. Both

approaches having drawbacks, an efficient and scalable hybrid

caching maintenance approach SACCS has been suggested, which is

based on LRU. A cache being limited in size, a cache replacement

strategy plays a central role. In this work, we proposed the value-

based function LUV for cache replacement algorithm to be

implemented with SACCS. Based on the complete history, LUV

selected the set of victims considering the potential of objects that

can be referenced in the near future and at the same time the cost of

fetching the data strategy, and it was shown to be an efficient

strategy. A good replacement policy is one that is used as

infrequently as possible to generate the same hit rates. The proposed

strategy was compared with other strategies which belong to different

categories of cache replacement strategies. Since in our simulation

we used a fixed parameter λ to calculate the function value for a data

object, for the future we propose to find an adaptive function for the λ

parameter that adjusts according to the query rate and client

disconnection. Also, in the function, we need to consider the update

frequency of the data object.

REFERENCES

[1] Barbara, D. and Imielinski, T. (1994). Sleepers and Workaholics:

Caching Strategies in Mobile Environments. ACM, SIGMOD.

[2] Cao, G. (2002, June). Proactive Power-Aware Cache

Management for Mobile Computing Systems. IEEE.

Transactions on Computers. Volume 51. No. 6. pp. 608-621.

[3] Jing, J. Elmagarmid, A. Helal, A. and Alonso, R. (1997). Bit-

Sequences: An Adaptive Cache Invalidation Method in Mobile

Client/Server Environments. ACM. Mobile Networks and

Application 2. pp. 115-127. 1997.

[4] Kahol, A. Khurana, S. Gupta, S.K.S. and Srimani, P.K. (2001,

July). A Strategy to Manage Cache Consistency in a

Disconnected Distributed Environment. IEEE. Transactions on

Parallel and Distributed Systems. Vol. 12. No.7. pp. 686-700.

[5] Wang, Z. Das, S. Che, H and Kumar. M (2003). SACCS:

Scalable Asynchronous Cache Consistency Scheme for Mobile

Environments. IEEE, Proceedings of the 23rd International

Conference on Distributed Computing Systems Workshops

(ICDCSW’03). pp.1-6.

[6] Wang, Z. Das, S.K. Che, H and Kumar, M. (2004, November).

A Scalable Asynchronous Cache Consistency Scheme

(SACCS) for Mobile Environments. IEEE Transactions on

Parallel and Distributed Systems. Vol. 155, no. 11, pp. 983-

995.

[7] Bahn, H. Koh, K. Sam, N. and Min, S. L. (2002). Efficient

Replacement of Nonuniform Objects in Web Caches. IEEE.

June, 2002. pp.65-73.

[8] Barbara, D. (1999). Mobile Computing and Databases - A

Survey. IEEE. Transactions on Knowledge and Data

Engineering, Volume 11, No.1, January/February 1999, pp.

108-117.

[9] Wu, K.L. Yu, P.S. and Chen, M.S. (1996). Energy-Efficient

Caching for Wireless Mobile Computing. IEEE. pp. 336-343.

[10] Hu, Q. and Lee, D.K. (1998) Cache Algorithms Based on

Adaptive Invalidation Reports for Mobile Environments. ACM.

Cluster Computing. Volume 1. pp. 39-50.

[11] Cao, G. (2002). Adaptive Power-Aware Cache Management for

Mobile Computing Systems.

http://www2002.org/CDROM/poster/88.pdf.

[12] Cao, G. (2002) On Improving the Performance of Cache

Invalidation in Mobile Environments. Mobile Networks and

Application, 7, pp. 291-303. Kluwer Academic Publishers.

Netherlands.

[13] Cao, G. (2003, September/October). A Scalable Low-latency

Cache Invalidation Strategy for Mobile Environments. IEEE.

Transactions on Knowledge and Data Engineering. Volume 15,

No. 5. pp. 1251-1265.

[14] Madhukar, A. and Alhajj, R. (2006, April 23-27). An Adaptive

Energy Efficient Cache Invalidation Scheme for Mobile

Databases. ACM. SAC 2006. April 23-27, 2006, Dijon, France.

pp. 1122-1126.

[15] Shen, H. Kumar, M. Das, S.K. and Wang, Z. (2005). Energy-

Efficient Data Caching and Prefetching for Mobile Devices

Base on Utility. Mobile Networks and Applications 10, pp. 475-

486.

[16] Xu, J. and Hu, Q. (2001). An Optimal Cache Replacement

Policy for Wireless Data Dissemination Under Cache

Consistency. IEEE. pp.267-274.

[17] Yin, L. and Cai, Y. (2003) A Generalized Target-Driven Cache

Replacement Policy for Mobile Environments. Proceedings of

Symposium on Applications and the Internet, 2003. pp. 14-21.

27-31 January 2003.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.92

74

[18] Shen, H. Kumar, M. Das, S.K. and Wang, Z. (2004). Energy-

Efficient Caching and Prefetching with Data Consistency in

Mobile Distributed Systems. IEEE. Proceedings of the 18th

International Parallel and Distributed Processing Symposium

(IPDPS’04).

[19] Seifert, A. and Scholl, M. H. (2002). A Multi-Version Cache

Replacement and Prefetching Policy for Hybrid Data Delivery

Environments. ACM. Proceedings of the 28th VLDB

Conference, Honk Kong, China, 2002.

[20] Santhosh, S. and Shi, W. (2005) A Semantic-Based Cache

Replacement Algorithm for Mobile File Access.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.92

74.

[21] Rabinovich, M. and Spatscheck, O. (2002). Web Caching and

Replication (2nd ed.) Boston: Addison-Wesley.

[22] Aggarwal, C. Wolf, J.L. and Yu, P.S. (1999, January-February).

Caching on the World Wide Web. IEEE. Transaction on

Knowledge and Data Engineering, Volume 11, No. 1,

January/February 1999. pp. 94-107.

[23] Podlipnig. S and Boszormenyi, L. (2003, December). A Survey

of Web Cache Replacement Strategies. ACM Computing

Surveys. Volume. 35. No. 4. pp.374-398.

[24] Lee, D. Choi, J. Kim, J.H. (1999). On the Existence of a

Spectrum of Policies that Subsumes the Least recently Used

(LRU) and Least Frequently Used (LFU) Policies. ACM.

SIGMETRICS ’99 5/99 Atlanta, Georgia, USA. pp. 134-143.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9274
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9274

