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   Abstract---Caching was suggested as a solution for reducing 

bandwidth utilization and minimizing query latency in mobile 

environments. Over the years, different caching approaches have 

been proposed, some relying on the server to broadcast reports 

periodically informing of the updated data while others allowed the 

clients to request for the data whenever needed. Until recently a 

hybrid cache consistency scheme Scalable Asynchronous Cache 

Consistency Scheme SACCS was proposed, which combined the two 

different approaches benefits’ and is proved to be more efficient and 

scalable. Nevertheless, caching has its limitations too, due to the 

limited cache size and the limited bandwidth, which makes the 

implementation of cache replacement strategy an important aspect for 

improving the cache consistency algorithms. In this paper, we 

proposed a new cache replacement strategy, the Least Unified Value 

strategy (LUV) to replace the Least Recently Used (LRU) that 

SACCS was based on. This paper studies the advantages and the 

drawbacks of the new proposed strategy, comparing it with different 

categories of cache replacement strategies. 
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I. INTRODUCTION 

   In mobile computing environments, where low powered devices are 

used to access and query databases over relatively low-bandwidth 

wireless channels, caching frequently accessed data objects will 

reduce bandwidth usage and delays perceived by users.  

   In mobile environments, caching is more challenging due to the 

mobility of the users and the disconnected modes, which arise due to 

the battery power saving measures or the unpredictable disconnection 

of wireless networks. However, having a copy of the data in the 

cache is not sufficient; the cache should also provide the users a fresh 

data on each hit.  

   Broadcasting was assumed to be an effective method for data 

dissemination, which consumes little bandwidth. Several methods for 

data distribution had been suggested to guarantee the cache 

consistency in mobile environments. Some used stateless servers to 

maintain the mobile environment [1][2][3], others stateful servers [4]. 

Combining each approaches positive features, the Scalable 

Asynchronous Cache Consistency Scheme (SACCS) maintenance 

scheme was proposed. It was based on the Least-Recently-Used 

(LRU) cache replacement strategy [5][6].  
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   To support the cache consistency maintenance algorithms, it is 

important to have an efficient cache replacement policy, for after all 

mobile units have limited disk storage and not all data objects can be 

cached. In this work, we propose the least-unified value algorithm 

(LUV) [7] to be used with the SACCS cache consistency 

maintenance scheme and compare it with the other four cache 

replacement strategy categories. LUV is a cache replacement 

technique that associates a value to each object in the cache and when 

needed replaces it with the object with the smallest value. This policy 

considers the reference potential and the retrieval cost of the data 

object per unit size. 

   This work is organized into six sections. Section 2 provides a 

literature review of the approaches proposed for cache consistency, 

invalidation strategies, and replacement policies of mobile 

environments. Section 3 describes the SACCS maintenance 

approach. In section 4 we present SACCS and LUV and the other 

cache replacement techniques. Section 5 presents the experimental 

results of the LUV cache strategy with SACCS as compared to the 

four different class strategies. Finally, in section 6 we provide a 

conclusion and discuss the future work. 

 

II. LITERATURE REVIEW 

   With the development of wireless communications a new model of 

distributed computing was introduced. It is more challenging and 

difficult than the other client/server based environments, since users 

can connect from different access points and may stay connected 

while on the move, at the same time its performance relies on the 

wireless bandwidth communication and the battery power.  

   A mobile unit (MU) communicates via an MSS (Mobile Support 

Stations) over a wireless channel. The wireless channel has upload 

channel and download channel. MUs use the upload channel to 

submit queries to the server, while the MSSs disseminate information 

or respond to the MU via the download channel. Each MSS is 

responsible for the MUs within a given geographical or logical area, 

known as a cell. Therefore, when an MU leaves a cell serviced by an 

MSS, a handoff protocol transfers the responsibility to the MSS of 

the new cell. This is shown in Figure 1. 

 
Figure 1. Wireless data communication system architecture [6]. 

 

   A mobile unit may move through the cells and may disconnect 

from the network. After an unknown time of disconnection an MU 

can reconnect to a different MSS. 
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   For delivering data there exist two different systems; push-based 

and pull-based [8]. In push-based systems, the server decides to send 

information either periodically or sporadically to the clients without 

waiting for their requests. In pull-based systems, clients send 

messages to the server to request for data. Broadcasting minimizes 

the number of uplink requests. By broadcasting invalidation reports 

(IR)s clients are notified about the cached items changes’. Yet a 

client may miss IRs when disconnected during broadcast and this has 

its drawbacks.  

   To maintain cache consistency three different types of algorithms 

were suggested. In stateless approaches, an MSS has no knowledge 

of MUs cache contents. The MSS periodically sends invalidation 

reports to the MUs. While at an MU, a data object request cannot be 

served until the next IR. The advantage for stateless approaches is 

that they are easy to manage. Their drawbacks are: they are not 

scalable to large database; their access latency on average is always 

longer than half of the broadcast period and finally at reconnection 

after a long disconnection all cache entries are deleted, even the valid 

data objects. The stateful approaches were suggested by Barbara and 

Imielinski [1][3][9][10][11][12][13][14]. In stateful approaches, an 

MSS keeps the state of each object for every MU cache and 

broadcasts their IRs only. Kahol et al. proposed a scheme that 

minimizes the overhead for MUs to validate their caches when 

reconnected, using stateless servers and asynchronous invalidation 

messages [4].  

   As for the hybrid approach Scalable Asynchronous Cache 

Consistency Scheme (SACCS), the MSS identifies only the data 

objects that might be valid in MU caches. It does not broadcast IRs 

periodically. The uncertain and ID-only states of an MU allow 

handling of sleep-wakeup patterns and mobility. All these improve 

the broadcast channel efficiency [5][6][15]. 

   A cache replacement strategy decides which object to evict from 

the cache when no space is available to store additional objects. It is 

based on several factors: recency, frequency, cost for fetching and 

size. To determine the effectiveness of a replacement strategy, certain 

metrics are measured such as the cache hit ratio, byte hit ratio, 

delays. Xu and Hu’s proposed the (Min_SAUD) [16], Yin et al. 

presented a generalized target-driven cache replacement policy for 

mobile environments [17]. [15][18][19] suggested cache consistency 

algorithms that integrated cache replacement and prefetching 

algorithms to efficiently maintain the read-only transactions data 

requirements for mobile hybrid data delivery environments. The first 

presented the Greedy Dual Utility cache replacement policy and the 

second Multi-version integrated caching and prefetching policy. A 

different replacement strategy than the conventional ones was 

suggested by Santhosh et al. which was based on semantic [20].  

   Web caching, like mobile data caching, aims to reduce network 

traffic, server load, access delays and is again impacted by the 

replacement strategy. Rabinovich and Spatscheck presented an 

overview of web caching and replications [21]. The first 

classification of replacement strategies for web caching was given by 

Aggarwal et al. who proposed three categories: direct extensions of 

traditional strategies, key-based and function-based [22]. Later, 

Podlipnig and Boszormenyi classified them as follows: recency-

based, frequency-based, recency/frequency-based, function-based 

and randomized strategies [23]. Certainly, each class of strategies has 

its own advantages and disadvantages. 

 

III. SCALABLE ASYNCHORONOUS CACHE CONSISTENCY 

SCHEME (SACCS) 

   In SACCS, the MSS is only responsible for identifying the data 

objects of the database that might be valid in the MU caches. To save 

downlink bandwidth usage, SACCS also reduces the periodic IR 

messages broadcasted. In addition to these two features, SACCS 

added two different states for data objects in MU caches, they are 

uncertain and ID-only, that allow handling of random sleep-wakeup 

patterns and mobility.  

   In SACCS, they used the LRU replacement algorithm [5][6] and it 

was for systems with read-only transactions. 

 

A. The SACCS Cache Management 

   In the server, each data object has a flag bit, which changes when 

the data is retrieved to indicate that a valid copy is available in the 

cache. Consequently, when this data object is updated, the server 

immediately broadcasts its IR and resets the flag bit to indicate that 

the cached data object is not valid anymore. Therefore, until the flag 

is reset no update requires broadcast of IR.   

   At an IR broadcast, an MU is either in an awake or in a sleep state. 

If the MU is awake then the state is changed from valid to ID-only. If 

the MU is disconnected, then the IRs are ignored and data are 

unaffected. However, when an MU wakes up after a disconnection, 

all valid state cached data objects are changed to uncertain state.  

   In SACCS using the LRU, every time a data is cached or is already 

found in the cache, it is moved to the head of the cache list.  In case 

the cache is full and a new data needs to be cached, to accommodate 

it and make enough space data entries are deleted from the tail of the 

cache list. In case the cache needs to be refreshed, to validate the data 

of the cache, all data with uncertain or ID-only state are allocated 

their original places and if there is not enough space, then data entries 

found at the tail are removed. 

 

IV. SACCS AND THE CACHE REPLACEMENT POLICIES 

   In general, cache replacement strategies affect hit rates; however, 

they are not the limiting factor for caching. Each strategy has certain 

targets and defines its metric. 

   While SACCS is based on (LRU), in this work; we examine the 

SACCS using a value-based function, the LUV, which emphasizes 

the reference information of the object as well as considering the 

fetch cost of the object and its size. 

A. A Value-based Function: Least-Unified Value 

   The LUV replacement algorithm is based on time of all past 

references and the number of references [7]. It uses the complete 

reference history. The only weakness of this strategy is in how to 

consider the parameter tuning. The LUV replacement strategy is 

being a value-based strategy, calculates for every data object i a value 

V(i), defined by the following formula 

   V(i) = W(i).p(i)  

where W(i) is the relative cost to fetch the object from its original 

server, calculated as the ratio of fetching cost of object i from the 

server (c(i)) and its size (s(i)).  

   W(i) = c(i)/s(i) 

while p(i) is the “probability” that object i is referenced in the future 

and is calculated as 

  p(i) = 



fi

k

kc tt
1

)(
   

tc being the current time and tk the oldest request time in a window of 

k request times. To give more weight to more recent references F(x) 

should be a decreasing factor. A possibility for the function is F(x) = 

x

2

1
 (0  ≤  λ  ≤  1). Note that λ converging to 1 reduces it to LRU 

where only the last reference time is considered, while λ converging 

to 0 reduces it to a weighted LFU, counting the number of previous 

references. 

  

B. The New Algorithm for SACCS and its Description 

   The algorithm first checks if the data is available in the cache and 

in valid state then the time of the last reference is updated and the 



new value calculated. Adding this new value to the heap, it restores 

the heap property. If the data is available in cache with uncertain 

state, it calculates the new value at the new referenced time, and then 

sends a message to check the validity of the data. In case the data is 

in ID-only state or not available in the cache it fetches the data and its 

value from the server, adds the time of the last reference and 

calculates the new value, inserting it to the heap, it adjusts the heap. 

If there is not enough space to download the data then it finds the 

data object with the lowest value and replaces it with the new data 

object, adds the value of the newly introduced data object and 

restores the heap. The algorithm for the new proposed cache 

replacement strategy is shown in Figure 2.  

 
Figure 2. New SACCS Algorithm. 

 

   LUV uses the heap structure to maintain the ordering of data 

according to their LUV values. The root of the heap has the lowest 

value. Therefore, the object found at the root of the heap is the object 

to be deleted. This is repeated until we get enough space for the 

incoming data object. Every deletion and insertion operation has a 

complexity of O(log2N). For every object’s updated value, the heap is 

adjusted. The time complexity for every adjustment operation is 

O(log2N). 

C. The Other Cache Replacement Strategies 

   To examine the efficiency of the proposed strategy LUV, we 

compared it with four different cache replacement algorithms, each 

belonging to a different classification of cache replacement strategies. 

A Recency-Based Strategy:  Least Recently Used (LRU) 

   This class’ strategies in general replace objects that were used least 

recently. Their implementation is fairly easy. The LRU was already 

used for SACCS.  

A Frequency-Based Strategy: Least Frequently Used (LFU) 

   This class’ strategies replace data objects that were used least 

frequently. They are popular and easy to be implemented. In the LFU 

cache replacement policy, the frequency of references for each data 

entry in the mobile user cache list is counted. The tail of the list 

contains the data with the minimum number of accesses.  

A Recency/Frequency Based Strategy: Least Recently/Frequently 

Used (LRFU) 

   The LRFU policy combines the two policies (LRU and LFU) and 

results in a policy that is better than both. To each data object it 

assigns a value. Every time the data object is referenced a weighing 

function F(x) is calculated which considers the data objects reference 

time span from the past to the current [24].  

A Randomized Strategy: Random 

   It is different from the previous strategies, a nondeterministic 

approach. The random strategy uses randomized decisions to remove 

and replace an object from the cache [23]. It does not need special 

data structure for inserting or deleting object and is simple to 

implement. Its disadvantage is that it cannot be evaluated and 

different simulation runs will give different results. 

V. PERFORMANCE EVALUATION 

A. Environment 

   We tested the performance of our model by means of a simulated 

environment in C++. For our simulation we considered a single cell 

environment with 100 MUs as clients and each MU with identical 

cache size 300. We had also considered 1000 data objects of five 

types of access of random object sizes (bytes) and variable average 

update interval (sec). 

   The sleep wakeup process is modeled as two-state Markov chain 

with MUs alternating between sleep and awake states. Each MU has 

a sleep-wakeup period randomly picked from the set of values (500, 

1000, 1500, 2000, 2500) sec. The sleep ratio is picked from (0.1, 0.3, 

0.5, 0.7, 0.9) and the request arrival rate from (1/10, 1/60, 1/110, 

1/160, 1/210). When an MU is in the sleep state, all requests are 

ignored. The query delay is counted as 0, when a requested data 

object is available at the MU. Otherwise, the query delay is counted 

as the time interval between the query response and query initiation. 

An uplink is counted when a query is retrieved from the original 

station through an uplink channel. A zipf-like distribution for MU 

access pattern is used in the simulation with z equal to 1.  The update 

process for a data object and the arrival requests follow a Poisson 

distribution. The channel is used for downlink and uplink data 

transmission with a bandwidth 1250 bps. Uplink message size is 

assumed 64 bytes and downlink message size as 64 bytes. As for the 

function parameters used for the LUV, we considered λ to be equal to 

0.5 and considered variable and random fetching cost and size ratios. 

B. Simulation Results 

   The performance of SACCs based on LUV  value-based cache 

replacement policy is evaluated and compared to SACCS based on 

LRU, LFU, LRFU and Random representative cache replacement 

policies of the remaining other four categories of  strategies. 

   When an MU receives a query, if the queried data object is valid in 

the cache, a cache hit is counted, and no uplink is needed for the 

query. The higher the hit ratio is the fewer the uplink per query. 

 

Figure 3. Total Hit for Simulation. 
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dx = data object,  

Mx = message for the data object,  

dy = data object that will be replaced, LUV= value calculated 

for the data object,  

L is the minimum value. 

Case 1:  dx is in cache and valid  

then calculate the LUV value  

return dx to the application. 

Case 2:  dx is in cache and uncertain  

then calculate the new LUV value 

send uncertain message to the server. 

Case 3:  dx is not cached or ID-only 

 Send cache missing message to the server.  

Wait for message Mx to appear at downlink channel 

If Mx is confirmation then set the state of dx as valid 

Return dx to the application, 

If Mx is the data item dx then  

While there is not enough space for dx 

Find min value L = Minimum LUV value for data 

object y belonging to the cache  

Evict the dy such that LUV Value of y = L; 

Keep value of the evicted data object 

End while 

Bring Mx into cache 

Calculate its LUV value 

Return Mx to the application. 



Table 1. Total Query, Total Hit, Total Miss. 

  
TOTAL 

QUERY 

TOTAL 

HIT 

TOTAL 

MISS 

LRU 16751 5086 11666 

LFU 16688 4172 12519 

LRFU 16695 4491 12206 

LUV 16726 5126 11599 

Random 16567 4695 11871 

    

   As it is shown in Table 1, the total hit for LUV is the highest. 

Figure 4. shows that the LUV cache replacement policy improves 

performance since the data requested is available in the cache, it will 

reduce the IR message broadcasts, avoiding the unnecessary traffic 

and retaining the valid data objects of the MU.  

 

Figure 4. Number of Hits vs. Time. 

 

Figure 5. Number of Misses vs. Time. 

   The results of the number of misses and number of hits (Figure 4. 

and Figure 5) and the miss and hit ratios (Figure 6. and Figure 7) are 

depicted for the five cache replacement strategies, over eight 

simulation time units with an interval of 50000 of simulation time. 

The miss (hit) ratio is the ratio of the number of unfound (found) data 

items in the cache over the number of all requested data. The worst 

hit ratios performance is for LFU, while LRU and LUV have the best 

hit ratio performances interchangeably. However, on an average the 

LUV outperforms the LRU.  

 

Figure 6. Miss Ratio vs. Time. 

 

Figure 7. Hit Ratio vs. Time. 

   A delay is the period of time between the time a request is issued 

and the time the result is received by the mobile application user. The 

average access delay is an important measurement of system 

performance. A shorter delay implies better performance. The total 

delay results of our simulation are presented in Figure 8. and the 

average delay results in Figure 9. 

   It is obvious that the tradeoff between energy cost and access 

latency is a hard one, we can decrease the uplink and download 

messages or improve the access latency to decrease the energy cost. 
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Figure 8. Total Delay vs. Time. 

 

Figure 9. Average Delay Vs. Time. 

   In Figure 10. based on the Table 2. results show that LUV results in 

less bytes/query, outperforming the other four cache replacement 

strategies. This is due to the fact that LUV not only considers the 

most recent data information but also future references according to 

their fetch cost. The decision of evicting data objects with low 

fetching costs is a smart way to save power consumption at a later 

stage.  

 

Figure 10. Bytes per Query. 

Table 2. Bytes per Query. 

  BYTES/QUERY 

LRU 793.541 

LFU 978.204 

LRFU 920.849 

LUV 791.037 

Random 859.57 

 

   In Figure 11. based on the results in the Table 3. LUV has the 

lowest ratio for data download/query. This means the value-based 

cache replacement strategy LUV is quite efficient and its selection of 

the victims set had saved unnecessary downloads. Since the 

algorithm favors the data objects that have low fetch cost values, it 

has saved fetching costs, which implies that it is less power 

consuming.  

 

Figure 11. Data Download per Query. 

Table 3. Data Download per Query. 

  
DATA 

DOWNLOAD/QUERY 

LRU 0.541938 

LFU 0.647951 

LRFU 0.609404 

LUV 0.534617 

Random 0.585622 
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VI. CONCLUSION 

   Caching is a good solution for mobile environments that are 

characterized with several constraints such as low bandwidth for 

uplink, irregular connections, and limited client resources. However, 

caching has some limitations too. Several approaches had been 

suggested to maintain cache consistency. In the stateful approaches 

the server knows what data was cached in which mobile unit while in 

stateless approaches the server is unaware of the information. Both 

approaches having   drawbacks, an efficient and scalable hybrid 

caching maintenance approach SACCS has been suggested, which is 

based on LRU. A cache being limited in size, a cache replacement 

strategy plays a central role. In this work, we proposed the value-

based function LUV for cache replacement algorithm to be 

implemented with SACCS. Based on the complete history, LUV 

selected the set of victims considering the potential of objects that 

can be referenced in the near future and at the same time the cost of 

fetching the data strategy, and it was shown to be an efficient 

strategy. A good replacement policy is one that is used as 

infrequently as possible to generate the same hit rates. The proposed 

strategy was compared with other strategies which belong to different 

categories of cache replacement strategies. Since in our simulation 

we used a fixed parameter λ to calculate the function value for a data 

object, for the future we propose to find an adaptive function for the λ 

parameter that adjusts according to the query rate and client 

disconnection. Also, in the function, we need to consider the update 

frequency of the data object. 
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