
Best Practices to Protect Databases behind RDBMS-Powered Web

Applications

Ahmad Hammoud and Ramzi A. Haraty

Lebanese American University

Beirut, Lebanon

Email: {ahammoud@gu.edu.lb, rharaty@lau.edu.lb}

Abstract

This article focuses on the best practices necessary to

protect the databases behind the Web applications.

Web masters, database designers, databases

administrators, and database developers should be

trained to follow these practices in order to minimize

unauthorized database access. Several topics will be

discussed, including: access through Web server,

indirect access to tables, transaction log versus

detailed action log, trash database, files access

control, sensitive information changes, and user’s

information.

Keywords: Database security and web applications.

1. Introduction

This article focuses on the best practices necessary to

protect the databases behind the Web applications.

Web masters, database designers, databases

administrators, and database developers should be

trained to follow these practices in order to minimize

unauthorized database access. Several topics will be

discussed, including: access through Web server,

indirect access to tables, transaction log versus

detailed action log, trash database, files access

control, sensitive information changes, and user’s

information. This work applies to all Database

Management Systems (DBMSs) that are currently in

use. This includes Oracle Database Server, Microsoft

SQL Server, and IBM DB2. The following table lists

some RDBMS along with the host platform [4].

DBMS

Vendors

DBMS version

addressed

Host platform

Oracle Database Server

8i, 9i, 10g

Windows,

UNIX, OS/390

Microsoft SQL Server 7

and 8 (2000)

Windows

IBM DB2 Universal

Database 8.1

Windows,

UNIX

The remainder of the paper is organized as follows:

Section 2 presents the background of this work.

Section 3 presents the database best practices. And

section 4 contains the conclusion.

2. Background

More and more frequently, malicious users are

attacking data stored within a DBMS. The effect of

such an attack may result in unauthorized access to

sensitive data. DBMSs have also joined the ranks of

malicious attacks victims [3].

Before one can handle database security, it is of

crucial importance to understand database concepts.

Businesses cannot afford the risk of an unauthorized

user changing or even observing the data in their

databases [1].

There are three types of concerns related to the

security of databases. These types are: “incorrect data

modification, unauthorized data observation, and data

unavailability” [2]. Unauthorized data observation

occurs when database users access information that

they are not authorized to view. Incorrect data

modification is either intentional or unintentional.

Data unavailability takes place when “information

crucial for the proper functioning of the organization

is not readily available when needed [2].

Despite a rigorous set of security criteria,

vulnerabilities and attacks still occur even in the most

advanced systems. In February of 2003, a breach in

the security of a database owned by DPI (Data

Processors International), a credit card processing

company, released about eight million credit card

numbers to attackers. This was estimated to cost the

credit card companies about $200 million dollars

(cancellation and renewal expenses) [6].

The 2002 Computer Crime and Security Survey of the

Computer Security Institute revealed that every year,

more than half of all databases have a kind of breach.

It also revealed that the average breach amounts to

nearly $4 million in losses [7].

By applying security techniques without

understanding them, it is possible to compromise

security [1]. This article is meant to help those in

charge of database security to minimize the risk of

both unauthorized data observation and modification.

Keishi Tajima of Kyoto University states that “User

access to a database is either an action to get some

information from the database, or an action to give

some information to the database in order to make it

reflected by the database state” [8]. With this in mind,

we find that database users share a great deal of

responsibility.

mailto:ahammoud@gu.edu.lb
mailto:rharaty@lau.edu.lb

The most common threats to the data stored inside

your database include: [5]

 Unintentional threats from either known

parties or accidents. Authorized users will

inadvertently make some mistakes. They

may also see data they should not see.

Sometimes, they may delete or change

records that they should not have access to.

 Intentional threats from known parties such

as hackers who will benefit from accessing

or intentionally damaging data that they

should not see.

 Threats from anonymous parties or uninvited

intruders. These are mostly Internet-based

threats from intruders with anonymous

access.

The following sections provide a list of best practices

that could possibly enhance the database security. All

those in charge of the database security should be

encouraged to follow these practices. The list

presented in this article is not exhaustive; there are

many more practices to follow. The aim here is to

raise the level of awareness without the use of any

extra tool.

3. Main Thrust: Database Best Practices

Access through Web Server

It is a big problem to have your database server

exposed to the Web without any type of protection.

How can you guarantee that it will not be attacked?

Who can make sure it will be accessed only through

your Web server? Obviously there is no guarantee to

this unless certain measures are taken. This paper

intends to provide possible solutions to this problem.

Can the Access to the Database Server be Limited

to the Web Server?

The answer is yes. There are many ways to achieve

this. Some IT experts may recommend the use of

ready-made packages. Although some of these

packages are trustworthy, some do not guarantee a

complete access control. The approach suggested here

will make certain that the databases are protected

without using any extra tools. The suggested approach

is efficient because it makes use of triggers to control

access to the database. The advantage of the approach

lies in its ability to run on the database level. Before

giving any illustrations, the trigger concept will be

defined to help explain how it will contribute in the

solution.

What Is A Trigger?

Triggers are considered a special type of stored

procedure. They automatically run when a DML event

occurs in the database. This is to say that they are

invoked whenever an INSERT, UPDATE, or

DELETE statement is executed. Trigger can include

complex SQL statements. Both the statement firing

the trigger and the trigger itself are considered a

single transaction. This means that it can be rolled

back if a severe error occurred. When this happens,

the whole transaction will automatically roll back,

which implies that all changes made will not be saved

to the database.

Proposed Solution

Triggers can detect incorrect DML operations and

malicious transactions. They can be designed to take

proper action when such an activity is detected. They

can also be used to enforce some restrictions, which

are more complicated than the ones that can be

defined using the CHECK constraint. Triggers can

check the state of the corresponding table before and

after DML operations and take proper actions

accordingly.

Typically, all tables are guarded by:

1. An UPDATE trigger that fires when an

UPDATE statement is invoked to change the

content of the table.

2. A DELETE trigger that fires when a

DELETE statement is invoked to delete

records from the table

3. An INSERT trigger that fires when an

INSERT statement is invoked to add new

record(s) to the table.

Taking advantage of the above guards, the database

administrator may design three triggers for each table

in order to check whether the user accessing the table

is the Web server’s account. The following code

snippet shows the syntax that might be used to

achieve this goal. It is the code necessary to create an

INSERT trigger that will make sure that the user

trying to add a new record is the Web server. If this is

not the case, the whole operation will be rolled back

and an entry is made in a log table that will be

reviewed by the system administrator. Here is the

trigger:

CREATE TRIGGER

Employees_ITrig_OnlyIIS ON

dbo.Employees

FOR INSERT

AS

BEGIN

 If user <> 'IUSR_WebServerName'

 BEGIN

 Rollback

 Insert Into

MaliciousTrialsTbl (Operation, TrialDate,

Usr)

 VALUES

('Update PersonTbl',getdate(), user)

 END

END

The user name 'IUSR_WebServerName' can be, for

example, replaced by the username that ASP.NET

uses. Similar triggers can be defined for INSERT and

DELETE operations. If this approach is followed, the

database administrator can be 100 percent sure that

“his/her” database is never touched but by the Web

server. Another important point that needs to be

emphasized here is the ability to control the reaction.

If an undesired operation is about to occur, you,

database administrator may decide to perform any or

all of the following:

 Rollback the whole transaction

 Allow but notify

 Make an entry in the log file

 Send an email

 Call a stored procedure

 Any other custom action

This will add certain value to the “safety” of the

database by enhancing its security level. It is an

inexpensive, easy-to-implement, efficient, proved, and

simple way to enforce access control, one of the worst

nightmares of the Web masters, database designers,

databases administrators, and Database developers.

Indirect Access to Tables

Whatever the case is, direct access privilege should

never be granted to any user other than the database

owner. What is meant by direct access privilege is the

permission to access the table directly and not through

a stored procedure. The user should not be allowed to

open a table, delete records from it, or update records.

Instead, all the users should be given permission to

run selected stored procedures each of which

performs a well defined task. If the user is given

permission to access the table immediately, then the

control is minimal. The best practice is to deny all

users access to all tables. Then, the developer, or the

database administrator, determines which stored

procedure is needed by which role (group of users).

Every role should be given only the permission to

execute the needed stored procedures; neither more

nor less.

Figure 1 shows a snapshot obtained from the SQL

Server Management Studio. It shows the table

properties of the Employees table. Note that the

Public group, to which all users belong, is not allowed

to access the table. All types of permission are denied.

These types are: Alter, Control, Delete, Insert,

References, Select, Take Ownership, Update, and

View definition.

Figure 1: Deny Access to Public Role

Hence, how are the users expected to communicate

with the database if they are not allowed to access any

table? To be able to answer this question the concept

of Least Privilege needs to be defined. It is to give

users only the least security privileges needed to

complete a given task. While this is in mind, the Web

developer, the database administrator, or/and the

system administrator gives the roles (groups of users)

only the minimum rights required. For example, the

users who should be able to see the information of a

certain employee should be given the permission to

execute the following stored procedure:

CREATE PROCEDURE Employees_Select_1ID

 @ID int

AS

BEGIN

 SELECT * FROM Employees WHERE ID =

@ID

END

Obviously, the users will be able to SELECT only 1

row through this procedure. To be on the safe side, the

procedure may only specify 1 or 2 columns instead of

using the star (*) which means to return all the

columns. Figure 2 shows the permission granted to

the HR_Operator, which should be allowed to

EXECUTE the above stored procedure. Following the

concept of least privilege, the user (or the group of

users) is given “Execute” but everything else is

denied. As seen in Figure 2, the HR_Operator cannot

do any of the following: Alter, Control, Take

ownership, and View definition. Although he/she is

granted the EXECUTE, he/she will not be able to

grant others. This is what least privilege is about.

Figure 2: Stored procedure – least permissions

Bear in mind that the user can still perform SELECT,

UPDATE, DELETE and other data manipulation

statements although he/she does not have the

permission to access the table as long as he/she is

granted the permission to execute a stored procedure

that does so. Thus, the typical secure situation in this

context is when all the users are given the permission

to execute stored procedures. No one, except the

database owner, should be able to access the tables

directly.

Transaction Log vs. Detailed Action Log

Surveillance cameras record events 24 by 7. They

keep recording everything that is captured. You refer

to them only when there is something wrong in order

to discover who did what. However, a question might

be posed here: What can be done so that the camera

does not record everything? There is a need to let the

camera record the 24 hours as a list of several events

so when the video tape is reviewed, one can check it

in a matter of seconds instead of watching the whole

collection of video tapes. For example, suppose you

are responsible for 10 surveillance cameras in a mall

and a burglary has occurred. The time at which it took

place is not known but most probably it has happened

during the previous week. So you are supposed to

watch 10 x 24 x 7 = 1680 video tapes. For more than

one week or more than 10 cameras, the case is worse.

What can a human being discover if he/she is

supposed to watch 1680 hours of recorded actions!

The answer is not that much. Hence, another strategy

should be followed.

The same concept applies when dealing with

applications. Suppose a penetration occurred and you

wanted to investigate the case. You know that it

happened a week earlier. You will open the log file

and you will have to review hundreds of entries. To

facilitate your mission, an alternative approach should

be followed. Instead of recording every single hit and

access to objects which will result in huge log files,

use only one entry to record the transaction. This can

be achieved through the stored procedures. A stored

procedure may call other several procedures. If every

action is to be recorded, the single transaction may be

recorded in the form of multiple entries. Instead, a

chain of inter-related activities should be recorded

using a single entry. Consider the following stored

procedure:

CREATE PROCEDURE Customer_Delete_1ID

 @ID int

AS

BEGIN

1. IF dbo.HasPendingOrders(@ID) = 1 GOTO

HasPendingOrders

2. IF dbo.DueFeesGreaterThan0(@ID) = 1

GOTO DueFeesGreaterThan0

3. DELETE FROM CustomersOrders WHERE

ID = @ID

4. DELETE FROM CustomersHistory WHERE

ID = @ID

5. DELETE FROM CustomersContactInfo

WHERE ID = @ID

6. DELETE FROM Customers WHERE ID =

@ID

7. MakeEntryToTheLog

‘Customer_Delete_1ID’, @ID, ‘Succeeded’

GOTO Done

 HasPendingOrders:

MakeEntryToTheLog

‘Customer_Delete_1ID’, @ID, ‘Canceled:

HasPendingOrders’

GOTO Done

DueFeesGreaterThan0:

MakeEntryToTheLog

‘Customer_Delete_1ID’, @ID, ‘Canceled:

DueFees > 0’

Done:

END

Clearly, seven entries to the log file will be made if

every action is to be recorded. Nevertheless, only one

entry should be recorded as a result of executing the

above stored procedure. This way, the system

administrator will choose the transactions to be

monitored and will add lines similar to the seventh

one in the above stored procedure.

Trash Database

The idea of trash database is very simple: before

updating data or throwing it away, save the original

copy in a database that will be cleaned on a scheduled

basis. This database will be used only in case there is

a need to do so. If everything goes well, it will

remain intact. It has the same structure as the database

in use. Although saving a copy of the data before it is

updated or deleted will slow down the performance, it

may be of crucial importance if you want to:

 know who did what,

 know previous versions of a certain record,

or

 restore a previous state of a certain table.

Sometimes, the database administrator may decide not

to apply this to every table in the database. Only

several important tables may be chosen to be treated

as such. The following DELETE trigger will save a

copy of the original rows in a trash database before

executing the delete statement:

CREATE TRIGGER Employees_DTrig ON

Employees FOR DELETE

AS

BEGIN

 INSERT INTO TrashDB..Employees (ID,

EmpName)

 Select ID, EmpName from [deleted]

END

Files Access Control

Suppose you are a developer writing a Web

application that allows users to download files. The

user should be able to download only his/her files.

How will you implement this?

You may put all of these files on the hard disk of the

Web server inside a folder and show the user a

hyperlink when he/she logs in. The download process

will start when the user will click the specified

hyperlink. This sounds good but what if the user

immediately types a URL in the address bar to

download a file that does not belong to him/her.

He/She will be able to do so. What can be done to

prevent the user from accessing files that do not

belong to him/her?

If, for instance, every user is using his Windows

account, then ‘who can access what’ can be controlled

by setting permissions (Access Control Lists or

ACLs) on all the resources. But if the Web server is

configured to use the IUSR_machinename account,

then this approach is useless because all resources will

be accessed using the same account. So what is the

alternative?

The following steps should be followed:

1. For each user, create a subfolder within the

parent directory.

2. Let the name of each subfolder be 25

characters (alphanumeric).

3. Save the pair <Username, Subfolder> to the

database.

4. Configure your Web server to prevent

directory browsing so that users will not be

able to know the subfolders within the parent

directory.

Now, when you want to show the user his/her

hyperlink, you will contact the database, retrieve the

pair <Username, Subfolder>, and create the hyperlink

accordingly. Because directory browsing is not

allowed, the user will not be able to guess the folder

of the others. It is an efficient way to control access to

files. You need to be very cautious. The name of this

folder should never be shown. Although it is a 25-

character name, some hackers standing behind the

user’s shoulder may be able to write down this name

and use it later. This is called shoulder surfing. A

popup window, for example, does not show the URL.

The same also applies if your page contains a media

player control to play the file.

Sensitive Information Changes

All those events that affect users’ account should be

recorded. This is extremely important when dealing

with sensitive applications such as financial packages.

All of the following types of changes should be

tracked:

 Profile changes

Changes to personal information should

always be recorded. This includes e-mail address,

phone number, address, salary, and any piece of

information related to the credit card.

 Password changes

Every time the user changes his password,

make an entry in your log file. Never allow such

an activity without tracking it.

 Modify other user

Every time an administrator changes the

profile of any other user, make sure you record

the event, the date and time of change, previous

values, and the user who performed the change.

 Add/Delete user

Record critical events such as creating new

users or deleting old ones.

In these cases, as much detail as possible should be

logged.

User’s Information

To improve the ability of tracking the users’ activities,

users’ information should be recorded for every row.

This implies that every record in every table should

include the following values:

 The name of the user who made the entry.

 The date and time of the entry.

 The name of the last user who updated the

record.

 The date and time of last update.

 The IP of the user.

 Session ID (sometimes).

How to Do It?

The developer or the database administrator may

write triggers to fill these columns, which will be

of high importance when it is time to track the

entries. The following is a trigger that will

automatically run when a record is about to be

inserted into the Employees table. Note that it

will automatically fill the four fields: AddUsr,

AddDate, LastUpdUsr, and LastUpdDate.

CREATE TRIGGER Employees_ITrig

ON Employees

FOR INSERT

AS

BEGIN

 Update Employees

 Set AddUsr = user, AddDate=getdate(),

LastUpdUsr =user, LastUpdDate =

getdate()

 Where ID in (Select ID from [inserted])

END

Another example is the Update trigger of the

same table:

CREATE TRIGGER Employees_UTrig

ON Employees

FOR UPDATE

AS

BEGIN

 Update Employees

 Set LastUpdUsr = user, LastUpdDate =

getdate()

 Where ID in (Select ID from [inserted])

END

What Information Does the Browser Send?

Every time a Web site is visited, the user’s

browser will automatically send several pieces of

information to the Web server. All of the

following will be sent:

 Host address

 Web browser’s version

 Web browser’s language

 Files accepted by the Web browser

 Characters accepted by the Web browser

 Browser encoding

 User name

 HTTP port of the computer

In addition, the settings of the computer can be

attained if the user enabled JavaScript on the Web

browser. This includes:

 JVM, or Java plug-ins

 FTP Password

 Current resolution

 Maximum resolution

 Version

 Color depth

 Platform

 Anti-aliasing fonts

False Assumption/HTTP referrer header

Many Web developers do not fully understand

the way HTTP and/or HTML work. They

sometimes mistakenly rely on the HTTP referrer

header as a security method. Supplied by the

client, the referrer header contains the referring

page address. Since it is supplied by the client,

the referrer header is easy to spoof. For example,

try to Telnet to the HTTP port (port 80) as

follows:

GET / HTTP/1.0

User-Agent: Spoofed-Agent/1.0

Referrer: http://www.lau.edu.lb/spoofed/referer/

As you see, a fake user agent header and a fake

referrer header are submitted. As a matter of fact,

any piece of information submitted by the user

can be spoofed, including the user’s IP address.

4. Conclusion

Several database practices are very important to

ensure the “safety” of the database. Security relies on

the concept of multiple defense lines. One should

never count on one defense strategy. The more

defense lines you have, the more secure you are.

Depending on a single line will lead to penetration as

soon as it is breached. The practices presented in this

chapter include:

 Allowing the Web server to be the only one

that can access the database server.

 Restricting direct access to the tables and

giving the roles only the minimum rights

required to complete their tasks.

 Logging transactions as compared to logging

detailed action

 Having a trash database to store original

versions of data before being updated.

 Controlling files access control to prevent a

user from accessing a file that does not

belong to him/her by simply typing the URL

of the file in the address bar.

 Recording sensitive information changes

such as password.

 Saving user’s information to enhance the

level of security.

 Storing pieces of information sent by the

browser such as host address.

 Warning not to rely on the HTTP referrer

header as a method of security.

Table 1 summarizes the practices recommended in

this document.

Table 1: Summary of the Practices Followed.

Practice Details

Access through Web server

The triggers can guard against malicious operations.

If the user trying to perform an operation is not the

Web server (or .NET) account, take action

If an undesired operation is about to occur, you may

rollback the whole transaction, allow but notify, make an

entry in the log file, send an email, call a stored

procedure, and/or any other custom action

Indirect access

No user should be able to access the tables

Users should be allowed to execute stored procedures

that perform very limited operations. The best practice is

to deny all users access to all tables

Transaction log vs. detailed action log

Do not record every user’s action. Instead, record the

whole transaction that includes many steps as a single

entry in the log table

Trash Database

Before updating data, keep a copy of the original

version in trash DB

Trash DB will be cleaned on a regular basis. Not all

tables, only selected ones, should be treated as such

Files Access Control

To prevent a user from accessing a file that does not

belong to him by simply typing the URL of the file

in the address bar, create a subfolder for each user

and save the pair <Username, Subfolder> to the

database

Because directory browsing is not allowed, the user will

not be able to guess the folder of the others

The Web server should prevent directory browsing

Avoid showing the name of this folder to prevent

shoulder surfing

Track sensitive information changes
This includes: profile changes, password changes,

modify other user, and add/delete user.

Practice Details

User’s Information

Every record in every table should include the user

who made the entry, entry date and time, last user

who updated the record, last update date and time,

and user’s IP

The developer or the database administrator may write

triggers to fill these columns which will be of high

importance when it is time to track the entries.

Save the info sent by the browser to the database.

This includes: host address, Web browser’s version, Web

browser’s language, files the Web browser accepts,

characters your Web browser accepts, browser encoding,

user name, and Http port of the computer.

Never rely on the HTTP referrer header as a method

of security
It is too trivial to spoof

References

[1] Aaron, Nathan. Oracle Database Security.

Retrieved September 22, 2006, from:

http://www.infosecwriters.com/text_resources/pdf/Or

acle_NAaron.pdf.

[2] Bertino, E., Sandhu, R.. “Database Security -

Concepts, Approaches, and Challenges.” Dependable

and Secure Computing, IEEE Transactions on

Volume 2, Issue 1, Jan.-March 2005 Page(s):2-19.

[3] Castano, S., Grazia Fugini, M., Martella, G.,

Samarati, P. Database Security. New York: ACM

Press/Addison-Wesley Publishing Co. 1995.

[4] DISA Database Security Technical

Implementation Guide Version 7, Release 2.

(Developed by Defense Information Systems Agency

for the Department of Defense). Retrieved October

01, 2006, from: http://iase.disa.mil/stigs/stig/database-

stig-v7r1.pdf.

[5] FileMaker, Inc. FileMaker 7, Security Guide.

Retrieved October 1, 2006, from:

http://www.filemaker.com/downloads/pdf/fm7_securi

ty_guide.pdf.

[6] Giuliani, M., Lobner, E., & Wagner P.

Investigating Database Security in a Networked

Environment. Retrieved September 17, 2006, from:

http://www.cs.uwec.edu/~wagnerpj/mics2006/Databa

seSecurity.pdf.

[7] Nevins, Scott. Database Security Breaches on the

Rise. Revealed August, 2006, from:

http://www.snwonline.com/evaluate/database_securit

y_03-31-03.asp?article_id=224.

[8] Tajima, Keishi. “Static Detection of Security

Flaws in Object-Oriented Databases.” Proceedings of

the 1996 ACM SIGMOD international conference on

Management of data SIGMOD '96, Volume 25 Issue

2.

http://www.infosecwriters.com/text_resources/pdf/Oracle_NAaron.pdf
http://www.infosecwriters.com/text_resources/pdf/Oracle_NAaron.pdf
http://iase.disa.mil/stigs/stig/database-stig-v7r1.pdf
http://iase.disa.mil/stigs/stig/database-stig-v7r1.pdf
http://www.filemaker.com/downloads/pdf/fm7_security_guide.pdf
http://www.filemaker.com/downloads/pdf/fm7_security_guide.pdf
http://www.cs.uwec.edu/~wagnerpj/mics2006/DatabaseSecurity.pdf
http://www.cs.uwec.edu/~wagnerpj/mics2006/DatabaseSecurity.pdf
http://www.snwonline.com/evaluate/database_security_03-31-03.asp?article_id=224
http://www.snwonline.com/evaluate/database_security_03-31-03.asp?article_id=224

