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Abstract 
 

   As communication becomes more and more an 
integral part of our day to day lives, so our need 
to access information increases as well. Mobility 
is currently one of the most important factors to 
consider in our aim to achieve ubiquitous 
computing, and with it raises the problem of how 
to manipulate data while maintaining 
consistency and integrity. Recent years have seen 
tremendous interest in quorum systems adapted 
to mobile hosts; however, the more recent topic, 
of studying the effects of mobile networks on 
quorum systems, has also been the focus of 
interest for building quorums aware of their 
network surroundings. This paper presents a 
novel approach in selecting mobile hosts to form 
epidemic quorum coteries, based on metrics 
measured by mobile hosts and then transmitted 
to base station servers, which maintain a vigil on 
the state of these mobile hosts to provide higher 
quorum availability and ultimately higher data 
accessibility, better integrity and consistency. 
 
1. Introduction 
   Pervasive computing is a term loosely used to 
describe the current state of computer technology 
in modern life. Our reliance on computing 
mediums increases with the need for mobility, 
connectivity and data availability. 
 
   The average individual can go through a 
minimum of three different devices to perform 
various everyday tasks such as checking his/her 
email account on the desktop computer, calling a 
family member on the cell phone, listening to 
some music in the background on an iPod. 
 
  This paper presents a novel approach in 
selecting mobile hosts (MHs) to form epidemic 
quorum coteries, based on metrics measured by 
mobile hosts and then transmitted to base station 

servers, which maintain a vigil on the state of 
these mobile hosts to provide higher quorum 
availability and ultimately higher data 
accessibility, better integrity and consistency. 
 
   The remainder of this paper is organized as 
follows: section 2 provides a background. 
Section 3 presents the epidemic quorum 
algorithms. Section 4 discusses the improved 
quorum selection algorithm architecture. Section 
5 concentrates on the algorithms used in our 
approach. Section 6 provides the performance 
evaluation and section 7 presents the conclusion.  
 
2. Background 
   The quorum algorithm has been extensively 
studied since its earlier days, adapting it to 
mobile devices with connectivity issues and 
providing a solid quality of service for quorum 
members remains a challenge to tackle. 
 
   The architectures for mobile database systems 
have been varied and diverse; however, all these 
architectures still adhere to the ACID principals 
of standard databases systems. Serrano-Alvarado 
et al [7] provide an excellent overview of the 
various mobile database models, the most 
popular of which, are presented in [7] and Kumar 
[5]. 
 
   With a comprehension of the workings of these 
various models, recent publications by Holliday 
et al [3], [4] and Baretto Ferrero [1], seem to 
agree that quorum systems are the best suited for 
a mobile environment.  
 
   Very recently, the interest in studying the 
effects of mobile network environments on the 
performance and availability of quorum systems 
has spurred interesting publications in this area; 
most notable of which are, [6] by Peysakhov et 
al. that provides a general quorum availability 
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evaluation and Baretto Ferrero [1] that deals 
more specifically with the performance 
evaluation of epidemic quorum algorithms.  
 
   Other works were also studied, pertaining to 
quorum placement and congestion management, 
but the findings, although very interesting, were 
left as future improvements. 
 
3. Epidemic Quorum Algorithms 
   Epidemic Quorum Algorithms (which will be 
referred to as eQuorums from hereon), are a 
particular breed of epidemic algorithms with 
some very particular features that make them fit 
for distributed environments. eQuorums are used 
as substitutes to the standard pessimistic 
epidemic algorithm (ROWA) in environments 
that require high system throughput. 
Transactions in eQuorums are serialized in a 
causal fashion, so that one and only one 
transaction will commit through consensus. Vote 
results are stored in a log and then propagated to 
other sites through eQuorum messages until all 
sites have received the vote results. When a 
particular site receives a positive vote for a 
particular transaction, it automatically commits 
the data for that transaction aborting all other 
conflicting transactions at that site. 
 
    The goal is to maximize the availability of 
quorums and to increase the probability of the 
system, eventually reaching a global consensus, 
and thus agreeing on a given value. [1] provides 
a good overview of the performance of 
eQuorums and provides tangible metrics through 
which performance can be measured. The main 
goal of this work is to ensure that the availability 
of quorums is maximized, providing improved 
overall system performance. eQuorums 
propagate data items based on per site quorum 
votes. eQuorums perform a finite number of 
voting rounds; the outcome of which may be a 
second round of votes (if uncertain) or a 
decision. The work refers to these two metrics as 
probabilistic values represented by repε for the 
repeat probability condition and decε for the 
decision probability condition. 
 

   The probabilistic properties of repε and decε are 
as follows: 
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   Following the above workings of eQuorum 
votes and its probabilistic constraints, [1] has 
defined the availability of an eQuorum by the 
formula in (1): 
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Where pf is the probability of failure of a given 
host to vote, part of the numerator expression 
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   Although [1] assumes pf to be constant and 
uniform, in reality, given the volatile nature of 
wireless networks, the probability of failure 
cannot be fixed or defined ahead of time, as 
disconnections may occur randomly and without 
prior precursors. The goal is to minimize the 
probability of failure pf to maximize availability. 
 
   Sensing and incorporation of network states in 
quorums is a very recent topic of discussion, 
studied, most notably, by Peysakhov et al. [6] 
and Gupta et al. [2]. However, instead of using 
the standard client/server model, [6] uses 
migrating agents applied to standard quorums. 
As for the metrics evaluated in [6], they use a 
probability density function (equations (2) and 
(3)), similar to equation (1), of positive versus 
total number of votes, to calculate a confidence 
factor. 
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where C is a pre-selected confidence interval and 
F(C) denotes the combined probabilities of all 
the members of C. The process of measurement 
works by continually collecting votes, until such 
time as, the uncertainty threshold, defined as 
values lying outside of C, is reached. Although 
[6]'s method enhances the general confidence in 
a quorum, the presented approach deals only 
with the quality of the host as measured prior to 
quorum selection. Furthermore, an agent 
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approach to data collection suffers in weakly 
connected networks. The measures presented in 
this work would help agents find better hosts to 
collect data from, reducing the amount of failed 
visits an agent may encounter. 
 
4. IQSA Architecture 
   This section explains the architecture and 
various modules used to achieve better quorum 
host selection, based on metrics measured by the 
mobile hosts pertaining to their state, and sent 
periodically to the base server (BS). We 
introduce the following metrics and variables to 
measure the performance, connectivity and 
health of a particular mobile host. 
 
− Signal Strength: Defines the current signal 

strength of a MH, currently registered with a 
BS. 

− Host Priority: Depending on the signal 
strength of the MH, a priority number is 
given directly proportional to the signal 
strength. 

−  Host Trend: Defined as a derived metric 
based on the performance of a MH's signal 
strength with time. The trend is calculated 
using a standard weighted linear regression. 

 
   The BS, once it receives this data from a MH, 
will classify it in a heap structure that allows 
picking the best performing MHs when a quorum 
is being built. The heap structure on the BS is 
constantly maintained as a max heap.  
The max heap keeps a real-time record of  all 
registered MHs ordered on the metrics 
mentioned prior, from most reliable to least 
reliable. 
 
   The architecture also introduces the means to 
migrate MHs from one BS to another. Since the 
MH is essentially a mobile unit, the user may 
travel through various BSs while going to work, 
and as such may travel and register with various 
base stations (similar again to the mobile phone 
network). So as not to clutter every BS with stale 
data, the MH will automatically be unregistered 
from a BS once that MH leaves its area of 
coverage. When a user registers with a new BS, 
the MH will automatically send the new BS the 
previous BS's address it was registered with.  
 
   This allows both BSs to communicate with 
each other and migrate the entry from the 
previous BS to the new BS. In some cases, 

mobile users may swing between two or more 
BSs, creating heavy migration traffic. In these 
cases, the MH may opt to remain registered with 
a particular BS as long as the cell that the user 
was registered in, is adjacent, in terms of area of 
coverage, to the cell he/she's currently in.  

 
5. The Algorithms 
   In this section, we discuss the high level 
algorithms that need to be implemented, in order 
to mimic the architecture discussed in the 
previous chapter. Figure 1 shows the various 
high level parts and their high level interaction 
with one another. 
 
   The client module is responsible for serializing 
the data and sending it over the wire to the 
server.          When a server receives a packet 
from a client, it stores and classifies the client 
data into a max heap structure, based on the 
priority metric measured at the client end. The 
last module involves the inter-server data 
exchange system, which allows servers to 
exchange information about clients when they 
migrate from one server to the other and 
complete registration. 
 

 
Figure 1. IQSA high level modules interaction 

 
5.1 Client Agent Procedures and Data 
Structures 
 
   The following is the Client data structure of 
metrics and measurements. 
 
type: HostData 

record 
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SignalStrength : int 
Hostname : string 
PreviousBS : string 
Priority : float 
Trend : double 
Time : vector of double 
PrioSig : vector of double 

 
   Of the aforementioned variables, most notable, 
are the Time vector structure and the PrioSig 
vector structure. The Time structure holds a 
timestamp for every measure of both the 
SignalStrength and Priority performed by the 
agent, at specific intervals metrics. The PrioSig 
structure on the other hand, holds an aggregate 
weighted measure of both the Priority metric and 
SignalStrength metric. These two vector 
structures are used to store historical data, 
needed by the linear regression function, which 
measures the host's trend metric. 
 
   When a MH first connects, it initializes all its 
metrics with either the most current measure 
taken  or to default values. The trend metric is 
initially null due to the unavailability of data to 
perform regression calculation. Calculations of a 
weighted aggregate value combining both signal 
strength and priority metrics is also performed. 
The aggregation of these two metrics and its 
subsequent use in the linear approximation 
would be controlled by assigning to it a variable 
weight factor. This calculation is performed 
every time the client agent gets an updated 
measure on the basic metrics: signal strength and 
priority. 
 
5.2 Server Side Procedures 
 
   On the receiving end, is the base station, 
running a server listening for registration and 
update requests sent by MH agents. The BS is 
responsible for maintaining an organized max 
heap structure of all currently registered MHs 
that fall under its zone of coverage. The 
following procedures take place to insure proper 
information addition/update.  
 
Step1: The BS would first check if the record for 
that MH is registered with it, if not it will 
retrieve that data from the last BS that MH was 
registered with and deleting the entry of that MH 
from the previous BS’s heap. The BS will then 
add the MH's record to its max heap structure. 
  
Step2: If the MH's record already exists then the 

BS will consider the incoming data as an update 
and proceed to search and update its heap 
structure with the new data sent by the MH 
agent. 
 
Step 3: The last case the server considers is for a 
newly connected MH. In this case the server will 
determine that this is a first time sign on by a 
new client and proceed as outlined in step 1. 
 
6. Performance Evaluation 
   The algorithm performance is measured in the 
standard Big O notation. We first identify the 
following areas of the code that affect the 
performance of the algorithm, as presented in the 
previous section. We also distinguish between 
the preprocessing stage, which involves building 
and maintaining the heap structure, and the 
quorum selection process, which is a bounded 
function that depends on the size of the expected 
quorum. The amount of messages passed 
between the MH agent and the server are 
measured to insure that the least amount of 
needed messages are passed and to minimize 
network congestion problems. 
 
   The performance of the heap building and 
sorting algorithms are well-known. Locating an 
element in the heap has linear 
performance )(nO . Although better search 
performance can be achieved using more 
efficient algorithms, it is not the focus of this 
work to tackle this issue. However, it is worth 
mentioning that n is bounded by the limited 
amount of hosts a BS can handle. As such we can 
represent the search procedure 
as ))(max(MHO for a particular BS. 
 
   Evaluating the performance of the main 
procedures involves a breakdown of the 
execution on every site, where network delays 
and other external factors have been ignored. The 
first step of the migration involves sending a 
request to a remote server, where a search and 
delete procedure is executed. The search 
procedure's performance is )(nO , 
with )1(O performance for deletion once that 
record is found. When a record is received by the 
current server, the MH attempts to register using 
the combined insert and sort operations of the 
max heap structure. This adds a performance 

execution overhead of ))(log.( 22 nnO , for a 
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total combined worst case performance hit 

of ))(log.( 23 nnO . Generalizing this to m sites, 
would yield a worst case global performance 
described in Expression (1). 

 ∑
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Ordinarily an insert operation on a heap data 
structure should be of the order ))(log(nO . 
However, due to the choice of the key (the 
Priority variable) chosen to sort the heap on, 
finding a host would require linear time instead, 
based on the MH's identification string. This is 
one shortcoming that can be remedied in 
subsequent development of this architecture. 
 
   By selecting the best performing hosts from the 
max heap data structure to participate in an 
epidemic quorum, the BS insures that the 
probability of a process failure on the selected 
MH is kept to the minimum possible, based on 
the general state of the network. As such, going 
back to Eq. (1), we propose to see the effects of 
minimizing the process failure on the overall 
availability through a variable pf for discrete 
values of dec and rep. 
 
   Appendix 1 tables and figures explain the 
mathematical results obtained, based on the 
mathematical framework presented in [1] for 
epidemic quorum availability measurement. The 
results also indicate that a minimum threshold 
should be respected when selecting MHs for 
quorums, below which, availability may suffer. 
This threshold would allow the MH selection 
procedure to set a cutoff point below which hosts 
would not be selected. 
 
   The results clearly show that based on the 
mathematical model presented in [1], the 
combination of a variable pf, decision probability 
and repetition, although mainly affected by the 
probability of a quorum reaching a decision, 
clearly diminishes as the pf factor increases. 
Selecting MHs with low probabilities of failures 
would ultimately lead to a far more stable and 
available quorum system. The probability for 
reaching a quorum decision on the other hand, is 
not directly related to pf, but an indirect relation 
with the previous two factors may be inferred. 
Although the model does indicate that high 
availability is achieved, the convergence time to 
a consensus will increase with the amount of 

repetitions, leading to higher delays in up-to-date 
data acquisition. Table 3 shows the variance of pf 
with high probability of repetition. 
   Trivially, with higher vote repetition, in the 
worst case scenario, the time tvote it would take to 
create a quorum and reach a result can be 
expressed by equation (4): 

 ∑
=
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0

rep

n
repetitioncreatevote ttt  (4) 

where trepetition would vary with each repeat 
round, depending, among other factors, on 
network conditions as well. The repetition factor 
is not only calculated based on process failure, 
but also assumes the ability of a quorum to reach 
a decision based on the amount of information 
available to that quorum. The model deals with 
the process failures due to network outages, 
rather than quorum failures, and as such, the 
repetition time and vote time factors expressed in 
Eq. (4) can be minimized by selecting reliable 
hosts, reducing both tcreate, and trepeat. 
 
   Theoretically, the model provides insight into 
the availability of epidemic quorums, but given 
the difficulty to model real world network 
failures due to its mathematical complexity, only 
live system tests can verify the viability of such a 
model.  
 
7. Conclusion 
 
   This work has presented an overview of the 
various mobile database models currently 
available, focusing mainly on the epidemic 
model, and more precisely on epidemic quorums. 
A novel approach to epidemic quorum selection 
based on an effort to minimize network 
disconnections, often experienced by wireless 
mobile hosts, was presented. The purpose of 
which, is to provide a more reliable quorum, 
with higher data availability. The classification 
of hosts according to measured and derived 
metrics, allows the model to be extended and 
incorporate other metrics which may be deemed 
important in later revisions, such as: database 
connection counts and performed transactions 
counts, to further refine the classification of 
mobile hosts. Work done in [2] can also be 
incorporated in the model to provide better 
quorum placement, minimizing network 
congestion and delays, instead of relying solely 
on traffic priority settings. 
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   One of the main points of future studies on this 
topic, would include, building historical track 
record of mobile hosts based on more elaborate 
regression models, rather than the simplistic 
linear model used herein. This would require that 
real performance data be made available to the 
system in order to allow the Bayes engine's 
learning process to evaluate its current state, 
based on measurements that reflect the reality of 
the system. The author also recognizes that much 
improvement should also be done on the 
algorithm itself, allowing for much better 
performance, especially in the area of host 
lookup, where a hash lookup table may be 
constructed in order to minimize lookup times.  
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Appendix 1 
Table 1 Availability Chart with dec=1 & ep=0 

Dec Rep
1 0

Pf Sum(Pf)
0 1.0000000000

0.1 0.9999999999
0.2 0.9999998976
0.3 0.9999940951
0.4 0.9998951424
0.5 0.9990234375
0.6 0.9939533824
0.7 0.9717524751
0.8 0.8926258176
0.9 0.6513215599

1 0.0000000000

 

Table 2 Availability Chart with dec=0.25 & ep=0 

 
Dec Rep

0.25 0

Pf Sum(Pf)
0 0.2500000000

0.1 0.2500000000
0.2 0.2499999744
0.3 0.2499985238
0.4 0.2499737856
0.5 0.2497558594
0.6 0.2484883456
0.7 0.2429381188
0.8 0.2231564544
0.9 0.1628303900

1 0.0000000000  
 

Table 3 Availability Chart with dec=0.25 & 
rep=0.65 

Dec Rep
0.25 0.65

Pf Sum(Pf)
0 0.7142857143

0.1 0.7142857142
0.2 0.7142856411
0.3 0.7142814965
0.4 0.7142108160
0.5 0.7135881696
0.6 0.7099667017
0.7 0.6941089108
0.8 0.6375898697
0.9 0.4652296856

1 0.0000000000  
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