

An Improved Quorum Selection Algorithm

Samer Younes and Ramzi A. Haraty
Department of Computer Science and Mathematics

Lebanese American University
Beirut, Lebanon

Email: {syounes@lau.edu.lb, rharaty@lau.edu.lb}

Abstract

 As communication becomes more and more an
integral part of our day to day lives, so our need
to access information increases as well. Mobility
is currently one of the most important factors to
consider in our aim to achieve ubiquitous
computing, and with it raises the problem of how
to manipulate data while maintaining
consistency and integrity. Recent years have seen
tremendous interest in quorum systems adapted
to mobile hosts; however, the more recent topic,
of studying the effects of mobile networks on
quorum systems, has also been the focus of
interest for building quorums aware of their
network surroundings. This paper presents a
novel approach in selecting mobile hosts to form
epidemic quorum coteries, based on metrics
measured by mobile hosts and then transmitted
to base station servers, which maintain a vigil on
the state of these mobile hosts to provide higher
quorum availability and ultimately higher data
accessibility, better integrity and consistency.

1. Introduction
 Pervasive computing is a term loosely used to
describe the current state of computer technology
in modern life. Our reliance on computing
mediums increases with the need for mobility,
connectivity and data availability.

 The average individual can go through a
minimum of three different devices to perform
various everyday tasks such as checking his/her
email account on the desktop computer, calling a
family member on the cell phone, listening to
some music in the background on an iPod.

 This paper presents a novel approach in
selecting mobile hosts (MHs) to form epidemic
quorum coteries, based on metrics measured by
mobile hosts and then transmitted to base station

servers, which maintain a vigil on the state of
these mobile hosts to provide higher quorum
availability and ultimately higher data
accessibility, better integrity and consistency.

 The remainder of this paper is organized as
follows: section 2 provides a background.
Section 3 presents the epidemic quorum
algorithms. Section 4 discusses the improved
quorum selection algorithm architecture. Section
5 concentrates on the algorithms used in our
approach. Section 6 provides the performance
evaluation and section 7 presents the conclusion.

2. Background
 The quorum algorithm has been extensively
studied since its earlier days, adapting it to
mobile devices with connectivity issues and
providing a solid quality of service for quorum
members remains a challenge to tackle.

 The architectures for mobile database systems
have been varied and diverse; however, all these
architectures still adhere to the ACID principals
of standard databases systems. Serrano-Alvarado
et al [7] provide an excellent overview of the
various mobile database models, the most
popular of which, are presented in [7] and Kumar
[5].

 With a comprehension of the workings of these
various models, recent publications by Holliday
et al [3], [4] and Baretto Ferrero [1], seem to
agree that quorum systems are the best suited for
a mobile environment.

 Very recently, the interest in studying the
effects of mobile network environments on the
performance and availability of quorum systems
has spurred interesting publications in this area;
most notable of which are, [6] by Peysakhov et
al. that provides a general quorum availability

International Conference on Communication Theory, Reliability, and Quality of Service

978-0-7695-3190-8/08 $25.00 © 2008 IEEE
DOI 10.1109/CTRQ.2008.14

13

International Conference on Communication Theory, Reliability, and Quality of Service

978-0-7695-3190-8/08 $25.00 © 2008 IEEE
DOI 10.1109/CTRQ.2008.14

13

International Conference on Communication Theory, Reliability, and Quality of Service

978-0-7695-3190-8/08 $25.00 © 2008 IEEE
DOI 10.1109/CTRQ.2008.14

13

International Conference on Communication Theory, Reliability, and Quality of Service

978-0-7695-3190-8/08 $25.00 © 2008 IEEE
DOI 10.1109/CTRQ.2008.14

13

evaluation and Baretto Ferrero [1] that deals
more specifically with the performance
evaluation of epidemic quorum algorithms.

 Other works were also studied, pertaining to
quorum placement and congestion management,
but the findings, although very interesting, were
left as future improvements.

3. Epidemic Quorum Algorithms
 Epidemic Quorum Algorithms (which will be
referred to as eQuorums from hereon), are a
particular breed of epidemic algorithms with
some very particular features that make them fit
for distributed environments. eQuorums are used
as substitutes to the standard pessimistic
epidemic algorithm (ROWA) in environments
that require high system throughput.
Transactions in eQuorums are serialized in a
causal fashion, so that one and only one
transaction will commit through consensus. Vote
results are stored in a log and then propagated to
other sites through eQuorum messages until all
sites have received the vote results. When a
particular site receives a positive vote for a
particular transaction, it automatically commits
the data for that transaction aborting all other
conflicting transactions at that site.

 The goal is to maximize the availability of
quorums and to increase the probability of the
system, eventually reaching a global consensus,
and thus agreeing on a given value. [1] provides
a good overview of the performance of
eQuorums and provides tangible metrics through
which performance can be measured. The main
goal of this work is to ensure that the availability
of quorums is maximized, providing improved
overall system performance. eQuorums
propagate data items based on per site quorum
votes. eQuorums perform a finite number of
voting rounds; the outcome of which may be a
second round of votes (if uncertain) or a
decision. The work refers to these two metrics as
probabilistic values represented by repε for the
repeat probability condition and decε for the
decision probability condition.

 The probabilistic properties of repε and decε are
as follows:

- 1)()(≤+ ndecnrep εε

- and 1)(: <∀ nrepn ε

 Following the above workings of eQuorum
votes and its probabilistic constraints, [1] has
defined the availability of an eQuorum by the
formula in (1):

∑

=

−

−

−







y

n

ny
f

n
f

nrep

ndecpp
n
y

0

)(

)(1

)()1(

ε

ε (1)

Where pf is the probability of failure of a given
host to vote, part of the numerator expression

)()1()(ndecpp
n
y ny

f
n

f ε
−−








represents the

probability of having n correct processes out of

y, and
)(1

)(
nrep

ndec

ε

ε

−
represents the probability of

consecutive repeat votes followed by a decide
vote.

 Although [1] assumes pf to be constant and
uniform, in reality, given the volatile nature of
wireless networks, the probability of failure
cannot be fixed or defined ahead of time, as
disconnections may occur randomly and without
prior precursors. The goal is to minimize the
probability of failure pf to maximize availability.

 Sensing and incorporation of network states in
quorums is a very recent topic of discussion,
studied, most notably, by Peysakhov et al. [6]
and Gupta et al. [2]. However, instead of using
the standard client/server model, [6] uses
migrating agents applied to standard quorums.
As for the metrics evaluated in [6], they use a
probability density function (equations (2) and
(3)), similar to equation (1), of positive versus
total number of votes, to calculate a confidence
factor.

)()1(ny
f

n
f pp

n
y −−






 (2)

 and

 ∑
∈

≥==
Ck

kxfCF 9.0)()((3)

where C is a pre-selected confidence interval and
F(C) denotes the combined probabilities of all
the members of C. The process of measurement
works by continually collecting votes, until such
time as, the uncertainty threshold, defined as
values lying outside of C, is reached. Although
[6]'s method enhances the general confidence in
a quorum, the presented approach deals only
with the quality of the host as measured prior to
quorum selection. Furthermore, an agent

14141414

approach to data collection suffers in weakly
connected networks. The measures presented in
this work would help agents find better hosts to
collect data from, reducing the amount of failed
visits an agent may encounter.

4. IQSA Architecture
 This section explains the architecture and
various modules used to achieve better quorum
host selection, based on metrics measured by the
mobile hosts pertaining to their state, and sent
periodically to the base server (BS). We
introduce the following metrics and variables to
measure the performance, connectivity and
health of a particular mobile host.

− Signal Strength: Defines the current signal

strength of a MH, currently registered with a
BS.

− Host Priority: Depending on the signal
strength of the MH, a priority number is
given directly proportional to the signal
strength.

− Host Trend: Defined as a derived metric
based on the performance of a MH's signal
strength with time. The trend is calculated
using a standard weighted linear regression.

 The BS, once it receives this data from a MH,
will classify it in a heap structure that allows
picking the best performing MHs when a quorum
is being built. The heap structure on the BS is
constantly maintained as a max heap.
The max heap keeps a real-time record of all
registered MHs ordered on the metrics
mentioned prior, from most reliable to least
reliable.

 The architecture also introduces the means to
migrate MHs from one BS to another. Since the
MH is essentially a mobile unit, the user may
travel through various BSs while going to work,
and as such may travel and register with various
base stations (similar again to the mobile phone
network). So as not to clutter every BS with stale
data, the MH will automatically be unregistered
from a BS once that MH leaves its area of
coverage. When a user registers with a new BS,
the MH will automatically send the new BS the
previous BS's address it was registered with.

 This allows both BSs to communicate with
each other and migrate the entry from the
previous BS to the new BS. In some cases,

mobile users may swing between two or more
BSs, creating heavy migration traffic. In these
cases, the MH may opt to remain registered with
a particular BS as long as the cell that the user
was registered in, is adjacent, in terms of area of
coverage, to the cell he/she's currently in.

5. The Algorithms
 In this section, we discuss the high level
algorithms that need to be implemented, in order
to mimic the architecture discussed in the
previous chapter. Figure 1 shows the various
high level parts and their high level interaction
with one another.

 The client module is responsible for serializing
the data and sending it over the wire to the
server. When a server receives a packet
from a client, it stores and classifies the client
data into a max heap structure, based on the
priority metric measured at the client end. The
last module involves the inter-server data
exchange system, which allows servers to
exchange information about clients when they
migrate from one server to the other and
complete registration.

Figure 1. IQSA high level modules interaction

5.1 Client Agent Procedures and Data
Structures

 The following is the Client data structure of
metrics and measurements.

type: HostData

record

15151515

SignalStrength : int
Hostname : string
PreviousBS : string
Priority : float
Trend : double
Time : vector of double
PrioSig : vector of double

 Of the aforementioned variables, most notable,
are the Time vector structure and the PrioSig
vector structure. The Time structure holds a
timestamp for every measure of both the
SignalStrength and Priority performed by the
agent, at specific intervals metrics. The PrioSig
structure on the other hand, holds an aggregate
weighted measure of both the Priority metric and
SignalStrength metric. These two vector
structures are used to store historical data,
needed by the linear regression function, which
measures the host's trend metric.

 When a MH first connects, it initializes all its
metrics with either the most current measure
taken or to default values. The trend metric is
initially null due to the unavailability of data to
perform regression calculation. Calculations of a
weighted aggregate value combining both signal
strength and priority metrics is also performed.
The aggregation of these two metrics and its
subsequent use in the linear approximation
would be controlled by assigning to it a variable
weight factor. This calculation is performed
every time the client agent gets an updated
measure on the basic metrics: signal strength and
priority.

5.2 Server Side Procedures

 On the receiving end, is the base station,
running a server listening for registration and
update requests sent by MH agents. The BS is
responsible for maintaining an organized max
heap structure of all currently registered MHs
that fall under its zone of coverage. The
following procedures take place to insure proper
information addition/update.

Step1: The BS would first check if the record for
that MH is registered with it, if not it will
retrieve that data from the last BS that MH was
registered with and deleting the entry of that MH
from the previous BS’s heap. The BS will then
add the MH's record to its max heap structure.

Step2: If the MH's record already exists then the

BS will consider the incoming data as an update
and proceed to search and update its heap
structure with the new data sent by the MH
agent.

Step 3: The last case the server considers is for a
newly connected MH. In this case the server will
determine that this is a first time sign on by a
new client and proceed as outlined in step 1.

6. Performance Evaluation
 The algorithm performance is measured in the
standard Big O notation. We first identify the
following areas of the code that affect the
performance of the algorithm, as presented in the
previous section. We also distinguish between
the preprocessing stage, which involves building
and maintaining the heap structure, and the
quorum selection process, which is a bounded
function that depends on the size of the expected
quorum. The amount of messages passed
between the MH agent and the server are
measured to insure that the least amount of
needed messages are passed and to minimize
network congestion problems.

 The performance of the heap building and
sorting algorithms are well-known. Locating an
element in the heap has linear
performance)(nO . Although better search
performance can be achieved using more
efficient algorithms, it is not the focus of this
work to tackle this issue. However, it is worth
mentioning that n is bounded by the limited
amount of hosts a BS can handle. As such we can
represent the search procedure
as))(max(MHO for a particular BS.

 Evaluating the performance of the main
procedures involves a breakdown of the
execution on every site, where network delays
and other external factors have been ignored. The
first step of the migration involves sending a
request to a remote server, where a search and
delete procedure is executed. The search
procedure's performance is)(nO ,
with)1(O performance for deletion once that
record is found. When a record is received by the
current server, the MH attempts to register using
the combined insert and sort operations of the
max heap structure. This adds a performance

execution overhead of))(log.(22 nnO , for a

16161616

total combined worst case performance hit

of))(log.(23 nnO . Generalizing this to m sites,
would yield a worst case global performance
described in Expression (1).

 ∑
=

m

k

nnO
0

23))(log.((1)

Ordinarily an insert operation on a heap data
structure should be of the order))(log(nO .
However, due to the choice of the key (the
Priority variable) chosen to sort the heap on,
finding a host would require linear time instead,
based on the MH's identification string. This is
one shortcoming that can be remedied in
subsequent development of this architecture.

 By selecting the best performing hosts from the
max heap data structure to participate in an
epidemic quorum, the BS insures that the
probability of a process failure on the selected
MH is kept to the minimum possible, based on
the general state of the network. As such, going
back to Eq. (1), we propose to see the effects of
minimizing the process failure on the overall
availability through a variable pf for discrete
values of dec and rep.

 Appendix 1 tables and figures explain the
mathematical results obtained, based on the
mathematical framework presented in [1] for
epidemic quorum availability measurement. The
results also indicate that a minimum threshold
should be respected when selecting MHs for
quorums, below which, availability may suffer.
This threshold would allow the MH selection
procedure to set a cutoff point below which hosts
would not be selected.

 The results clearly show that based on the
mathematical model presented in [1], the
combination of a variable pf, decision probability
and repetition, although mainly affected by the
probability of a quorum reaching a decision,
clearly diminishes as the pf factor increases.
Selecting MHs with low probabilities of failures
would ultimately lead to a far more stable and
available quorum system. The probability for
reaching a quorum decision on the other hand, is
not directly related to pf, but an indirect relation
with the previous two factors may be inferred.
Although the model does indicate that high
availability is achieved, the convergence time to
a consensus will increase with the amount of

repetitions, leading to higher delays in up-to-date
data acquisition. Table 3 shows the variance of pf
with high probability of repetition.
 Trivially, with higher vote repetition, in the
worst case scenario, the time tvote it would take to
create a quorum and reach a result can be
expressed by equation (4):

 ∑
=

+=
)max(

0

rep

n
repetitioncreatevote ttt (4)

where trepetition would vary with each repeat
round, depending, among other factors, on
network conditions as well. The repetition factor
is not only calculated based on process failure,
but also assumes the ability of a quorum to reach
a decision based on the amount of information
available to that quorum. The model deals with
the process failures due to network outages,
rather than quorum failures, and as such, the
repetition time and vote time factors expressed in
Eq. (4) can be minimized by selecting reliable
hosts, reducing both tcreate, and trepeat.

 Theoretically, the model provides insight into
the availability of epidemic quorums, but given
the difficulty to model real world network
failures due to its mathematical complexity, only
live system tests can verify the viability of such a
model.

7. Conclusion

 This work has presented an overview of the
various mobile database models currently
available, focusing mainly on the epidemic
model, and more precisely on epidemic quorums.
A novel approach to epidemic quorum selection
based on an effort to minimize network
disconnections, often experienced by wireless
mobile hosts, was presented. The purpose of
which, is to provide a more reliable quorum,
with higher data availability. The classification
of hosts according to measured and derived
metrics, allows the model to be extended and
incorporate other metrics which may be deemed
important in later revisions, such as: database
connection counts and performed transactions
counts, to further refine the classification of
mobile hosts. Work done in [2] can also be
incorporated in the model to provide better
quorum placement, minimizing network
congestion and delays, instead of relying solely
on traffic priority settings.

17171717

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.0000000000

Pf

A
va

il
a
b
il
it
y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.2500000000

Pf

Av
ai

la
bi

lit
y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.7142857143

Pf

Av
ai

la
bi

lit
y

 One of the main points of future studies on this
topic, would include, building historical track
record of mobile hosts based on more elaborate
regression models, rather than the simplistic
linear model used herein. This would require that
real performance data be made available to the
system in order to allow the Bayes engine's
learning process to evaluate its current state,
based on measurements that reflect the reality of
the system. The author also recognizes that much
improvement should also be done on the
algorithm itself, allowing for much better
performance, especially in the area of host
lookup, where a hash lookup table may be
constructed in order to minimize lookup times.

References

[1] Baretto, J., and Ferrero, P. (February 2007).
The Availability and Performance of Epidemic
Quorum Algorithms. INESC-ID Technical
Report 10/2007.

[2] Gupta, A., Maggs, B. M., Oprea, F., and
Reiter, M. K. (July 2005). Quorum Placement in
Networks to Minimize Access Delays.
Proceedings of the 24th Annual ACM
Symposium on Principles of Distributed
Computing (PODC'05), Las Vegas, NV, USA,
87–96.

[3] Holliday, J., Agrawal, D., and El Abbadi, A.
(July 2002). Disconnection Modes for Mobile
Databases. Wireless Networks, 8(4) 391-402.

[4] Holliday, J., Steinke, R., Agrawal, D., and El
Abbadi, A. (September 2003). Epidemic
Algorithms for Replicated Databases. IEEE
Transactions on Knowledge and Data
Engineering, 15(5), 1218-1238.

[5] Kumar, V. (2006). Mobile Database Systems.
New Jersey: J. Wiley & Sons Inc.

[6] Peysakhov, M., Dugan, C., Modi, P. J., and
Regli, W. (May 2006). Quorum Sensing on
Mobile Ad-Hoc Networks. Proceedings of the
Fifth International Joint Conference on
Autonomous Agents and Multi Agent systems
(AAMAS'06), Hakodate, Japan, 1104-1106.

[7] Serrano-Alvarado, P. (2004). A Survey of
Mobile Transactions. Distributed and Parallel
Databases. 16, 193-230.

Appendix 1
Table 1 Availability Chart with dec=1 & ep=0

Dec Rep
1 0

Pf Sum(Pf)
0 1.0000000000

0.1 0.9999999999
0.2 0.9999998976
0.3 0.9999940951
0.4 0.9998951424
0.5 0.9990234375
0.6 0.9939533824
0.7 0.9717524751
0.8 0.8926258176
0.9 0.6513215599

1 0.0000000000

Table 2 Availability Chart with dec=0.25 & ep=0

Dec Rep

0.25 0

Pf Sum(Pf)
0 0.2500000000

0.1 0.2500000000
0.2 0.2499999744
0.3 0.2499985238
0.4 0.2499737856
0.5 0.2497558594
0.6 0.2484883456
0.7 0.2429381188
0.8 0.2231564544
0.9 0.1628303900

1 0.0000000000

Table 3 Availability Chart with dec=0.25 &
rep=0.65

Dec Rep
0.25 0.65

Pf Sum(Pf)
0 0.7142857143

0.1 0.7142857142
0.2 0.7142856411
0.3 0.7142814965
0.4 0.7142108160
0.5 0.7135881696
0.6 0.7099667017
0.7 0.6941089108
0.8 0.6375898697
0.9 0.4652296856

1 0.0000000000

Acknowledgements:

This work was funded by a grant (grant number:
URC-T-2008-06) from the Lebanese American
University.

18181818

