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Abstract—This paper presents the first hardware 

implementation of the Successive Over-Relaxation (SOR) 

method for the solution of a 2D Poisson equation. We use 

Handel-C, a high level language for the implementation of 

algorithms on hardware, to code and implement our design 

which we map onto high-performance Field Programmable 

Gate Arrays (FPGAs), such as, Virtex II Pro, Altera Stratix, 

and Spartan3L. We use the FPGA vendors' proprietary 

software to analyze the design implementation performance. 

Besides, we implement SOR using C++ and compare our 

timing results with the obtained C++ version results. Our 

findings prove that SOR in hardware outperforms SOR in 

software. 

 

 

Index Terms—Hardware Design, High Performance 

Computing, Iterative Methods, Parallelization.  

 

I. INTRODUCTION 

  A large number of physical phenomena can be expressed 

as systems of linear equations. Numerical solutions for 

these equations allow us to glean valuable information 

about the system at hand. There are two basic approaches 

for solving linear systems: Direct Methods and Iterative 

Methods. In the first approach, a finite number of 

operations are performed to find the exact solution. In the 

second approach, an initial approximate of the solution is 

generated, then this initial guess is used to generate another 

approximate solution, which is more accurate than the 

previous one [13]. The robustness of applying iterative 

methods over direct methods is shown in different areas 

including: circuit analysis and design, weather forecasting 

and analyzing financial market trends.  

 

The well known iterative methods are: Gauss-Seidel, 

Multigrid, Jacobi and SOR which is of a particular interest 

in this paper. SOR has been devised to accelerate the 
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convergence of Gauss-Seidel and Jacobi, [4] by introducing 

a new parameter, , referred to as the relaxation factor. 

The SOR rate of convergence is highly dependent on the 

relaxation factor. The main difficulty of using SOR is 

finding a good estimate of the relaxation factor [13]. A 

number of techniques have been proposed for determining 

the exact value of  which accelerates the rate of 

convergence of the method [4], [13]. 

 

All available iterative methods packages, including SOR, 

are done in software. Examples are the: ITPACK 3A, 

ITPACK 3B, ITPACK 2C, ITPACK 2D, and the ELLPACK 

package [2], [9]. Several sequential and parallel techniques 

were used in these packages to accelerate the method [14]. 

 

The emergence of the new computing paradigm, 

Reconfigurable Computing (RC), introduces novel 

techniques for accelerating certain classes of applications 

including signal processing (e.g., weather forecasting, 

seismic data processing, Magnetic Resonance Imaging 

(MRI), adaptive filters), cryptography and DNA 

matching[11]. RC-systems combine the flexibility offered 

by software and the performance offered by hardware [5]. It 

requires a reconfigurable hardware, such as an FPGA, and a 

software design environment that aids in the creation of 

configurations for the reconfigurable hardware [11]. 

 

In [7], we present the first hardware implementation of 

an iterative method, the Multigrid. The speedup achieved 

demonstrates that hardware design can be suited for such 

computational intensive applications. Toward proving the 

hypothesis that accelerated versions of the iterative methods 

can be realized in hardware, we undertook the first 

hardware implementation of the Successive Over-

Relaxation method; using the same FPGAs that were used 

in [6]-[8]. 

 

In this paper, we study the feasibility of implementing 

SOR in reconfigurable hardware. We use Handel-C, a 

higher level design tool to code our design, which is 

analyzed, synthesized, and placed and routed using the 

FPGAs proprietary software (DK Design Suite, Xilinx ISE 

8.1i and Quartus II 5.1). We target Virtex II Pro, Altera 

Stratix and Spartan3L which is embedded in the RC10 

FPGA-based system from Celoxica. We report our timing 

results when targeting Virtex II Pro and compare them with 
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a software version results written in C++ and running on a 

General Purpose Processor. 

 

The remainder of this paper is organized as follows: In 

Section 2, the successive over-relaxation method is 

explained. In Section 3 we study the feasibility of 

implementing SOR on reconfigurable hardware. We present 

a parallelized version of the algorithm using the ‘par’ 

construct from Handel-C. The performance results are then 

analyzed and presented in Section 4. In Section 5, we 

conclude the paper and point out possible future work.  

 

II. DESCRIPTION OF THE ALGORITHM 

The successive over-relaxation method is an iterative 

method used for finding the solution of elliptic differential 

equations. SOR has been devised to accelerate the 

convergence of Gauss-Seidel and Jacobi [4], by introducing 

a new parameter, , referred to as the relaxation factor. 

 

Given the linear system of equations: 

bA   

the matrix A can be written as 

ULDA   

where D , U  and L denote the diagonal, strictly upper 

triangular, and strictly lower triangular part of matrix A  

[13]. 

 

Using the successive over relaxation technique, the 

solution of the PDE is obtained using: 

bLDxDULDx kk 1)1(1)( )(])1([)(       (1) 

where 
kx represents the 

thk iterate. 

 

The SOR rate of convergence strongly depends on the 

choice of the relaxation factor,   [2]. Extensive work has 

been done on finding a good estimate of this factor in the 

[0, 2] interval [2] [9]. 

 

Recent studies have shown that for the case where: 

 1 : SOR simplifies to Gauss-Seidel method 

[10]. 

  1  or 2  : SOR fails to converge[10]. 

  1 : SOR used to speedup convergence of a 

slow-converging process [13]. 

 1 : helps to establish convergence of 

diverging iterative process [13]. 

 

 

III. IMPLEMENTATION 

The successive over-relaxation method was designed 

using Handel-C, a higher-level hardware design tool. 

Handel-C comes packaged with DK Design Suite from 

Celoxica. It allows the designer to focus more on the 

specification of the algorithm rather than adopting a 

structural approach to coding [3]. Handel-C syntax is 

similar to the ANSI-C with additional extensions for 

expressing parallelism [3]. One of the most important 

features in Handel-C which is used in our implementation 

is the ‘par’ construct that allows statements in a block to be 

executed in parallel and in the same clock cycle. 

 

Our design has been tested using the Handel-C simulator; 

afterwards, we have targeted a Xilinx Virtex II Pro FPGA, 

an Altera Stratix FPGA, and Spartan3L which is embedded 

in an RC10 FPGA-based system from Celoxica. We have 

used the proprietary software provided by the devices 

vendors' to synthesize, place and route, and analyze the 

design [1] [3] [12]. 

 

In Fig. 1 and Fig. 2, we present a parallel and a 

sequential version of SOR. In the first version, we used the 

'par' construct whenever it was possible to execute more 

than one instruction in parallel and in the same clock cycle 

without affecting the logic of the source code. The dots in 

the combined flowchart/concurrent process model which is 

shown in Fig. 1 represent replicated instances. Fig. 2 shows 

a traditional way of sequentially executing instructions on a 

general purpose processor. Executing instructions in 

parallel have shown a substantial improvement in the 

execution of the algorithm. 

 

To handle floating point arithmetic operations which are 

essential in finding the solution to PDE using iterative 

methods, we used the Pipelined Floating Point Library 

provided by Celoxica [3]. However, an unresolved bug in 

the current version of the DK simulator limited the usage of 

the floating point operations to four in the design. The only 

possible way to avoid this failure was to convert/Unpack 

the floating point numbers to integers and perform integer 

arithmetic on the obtained unpacked numbers. Though it 

costs more logic to be generated, the integer operations on 

the unpacked floating point numbers have a minor effect on 

the total number of the design's clock cycles. 
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Fig. 1: SOR parallel version, showing the combined flowchart/concurrent process model. The dots represent replicated instancess. 
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Fig. 2: SOR flowchart, sequential version 

 

IV. EXPERIMENTAL RESULTS 

As mentioned before, the main objective of this paper is: 

i) studying the feasibility of implementing SOR method in 

hardware and ii) realizing an accelerated version of the 

method. 

 

The first objective is met by targeting high-performance 

FPGAs: Virtex II Pro (2vp7ff672-7), Altera Stratix 

(ep1s10f484c5), and Spartan3L (3s1500lfg320-4) which is 

embedded on RC10 board from Celoxica. The second 

objective is met by comparing the timing results obtained, 

with a software version written in C++ and compiled using 

Microsoft Visual Studio .Net. 

 

All the test cases were carried out on a Pentium (M) 

processor 2.0GHz, 1.99GB of RAM. The relaxation factor 

 was chosen to be 1.5 [10]. 

 

We use the FPGA vendor's tools to analyze and report the 

performance results of each FPGA. The synthesis results 

obtained, for different problem sizes, when targeting Virtex 

II Pro, Altera Stratix, and Spartan3L are reported in Tables 

1, 2 and 3, respectively. 

 



 

 

 

Table 1: Virtex II Pro Synthesis Results 

Mesh Size Occupied Slices Total Equivalent Gate Count 

8x8 128 2,918 

16x16 136 3,033 

32x32 219 4,807 

64x64 265 5,978 

128x128 315 7,125 

256x256 610 14,538 

512x512 1,098 23,012 

1024x1024 1,601 31,848 

2048x2848 2,289 53,476 

 
Table 2: RC10 Spartan3L Synthesis Results 

Mesh Size Occupied Slices Total Equivalent Gate Count 

8x8 302 279,010 

16x16 499 281,001 

32x32 589 282,997 

64x64 745 284,000 

128x128 877 285,872 

256x256 1,201 297,134 

512x512 2,010 299,858 

 
Table 3: Altera Stratix Synthesis Results 

Mesh Size 
Total Logic 

Elements 

Logic Element 

usage by nb. of 

LUT inputs 

Total 

Registers 

8x8 519 250 120 

16x16 601 310 155 

32x32 810 501 199 

64x64 999 637 280 

128x128 1,274 720 347 

256x256 1,510 890 948 

512x512 2,286 1,087 501 

1024x1024 2,901 1,450 569 

2048x2848 3,286 1,798 640 

 

Fig. 3 shows SOR execution time when targeting Virtex II 

Pro FPGA versus the execution time of SOR in C++. We 

started with a problem size of 8x8 and reached 2048x2048. 

Obviously, one can notice the acceleration of the method 

when moving from software implementation to hardware 

implementation. The speedup of the design, for different 

problem sizes, is shown in Table 4 and calculated as the 

ratio of Execution Time (C++) / Execution Time (Handel-

C). 

 

V. CONCLUSION  

In this paper, we have studied the feasibility of 

implementing the Successive Over- Relaxation (SOR) 

method on reconfigurable hardware. We used a hardware 

compiler, Handel-C, to code and implement our design 

which we map onto high-performance FPGAs: Virtex II 

Pro, Altera Stratix, and Spartan3L which is embedded in 

the RC10 board from Celoxica. We used the FPGAs 

vendor's tool to analyze the performance of our hardware 

implementation. For testing purposes, we designed a 

software version of the algorithm and compiled it using 

Microsoft Visual Studio .Net. 

C++ Handel-C

 
 

Fig. 3: SOR execution time results in both versions, 

Handel-C and C++. 
 

Table 4: Design Speedup 

Mesh Size Speedup 
8x8 1.76 

16x16 188 

32x32 6.71 

64x64 5.70 

128x128 1.51 

256x256 1.49 

512x512 3.03 

1024x1024 2.58 

2048x2848 3.38 

 

The software implementation results were compared to the 

hardware implementation results. The synthesis results 

prove that SOR is suitable for FPGA implementation; the 

timing results prove that SOR on hardware outperforms 

SOR on GPP. In the near future, in addition to realizing 

other versions of SOR, Modified SOR (MSOR), Symmetric 

SOR (SSOR) and Unsymmetric SOR (USOR), on different 

classes of reconfigurable hardware, we plan to implement a 

third iterative method, Jacobi, on the same classes of  

FPGAs that were used in [8] and in this paper.  

 

 



 

 

 

Once the three methods are realized on reconfigurable 

hardware, it will become possible to find the modeled 

system's solution, using the most suitable iterative method, 

at low cost. 

 

REFERENCES 

[1]  Altera Inc., www.altera.com. 2006 

[2] Bailey W., "The Successive Over Relaxation Algorithm and its 

     application to Numerical Solutions of Elliptic Partial Differential 
     Equations". B.Sc.  Project, Dublin Institute of  Technology. 2003. 

[3] Celoxica, www.celoxica.com. 2006. 

[4] Evans G., Blackledge J. and Yardley P., Numerical Methods for Partial 
      Differential Equations.  Springer-Verlag. London 2000. 

[5] Compton K. and Hauck S. "Reconfigurable Computing: A Survey of  

      Systems and Software". In ACM  Computing Surveys, vol. 34, no. 2, 
      pp. 171-210, June 2002. 

[6] Kasbah S., Damaj I., "A hardware implementation of Multigrid  

      Algorithms". Poster Session: 17th International Conference on Domain  

       Decomposition Methods, Austria July 2006. 

[7] Kasbah S., "Multigrid Solvers in Reconfigurable Hardware". Master 
      Thesis, Division of Computer Science and Mathematics, Lebanese 

      American University. 2006. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 [8] Kasbah S., Damaj, I., and Haraty R., “Multigrid Solvers in  

      Reconfigurable Hardware”, Journal of Computational and Applied  
      Mathematics., to be published. 

[9] Kincaid D., Celebrating Fifty Years of David M. Young's Successive 

      Overrelaxation Iterative Method. Numerical Mathematics and  
      Advanced  Applications, M. Feistauer, V. Dolejsi, P. Knobloch, K. 

      Najzar (Eds.), 

      Springer-Verlag, Berlin Heidelberg, pp. 549-558. , 2004. 
[10] Kulsrud H. E., "A practical technique for the determination of the 

       optimum relaxation factor of the successive over-relaxation method".  

       communications of the  ACM vol. 4 nb. 4. pp.184-187. 1961. 
[11] Li Y., Callahan T., Darnell E., Harr R., Kurkure U., and Stockwood 

       J., "Hardware-Software Co-Design of Embedded Reconfigurable 

       Architectures," In 37th Design Automation Conference, Los Angeles, 
       CA, pp. 507-512, 2000. 

[12]  Xilinx. www.xilinx.com. 2006. 

[13] Young D., "Iterative Methods for Solving Partial Difference 
        Equations of  Elliptic Type", Ph.D. Thesis, Department of 

        Mathematics, Harvard  University, 1950. 

[14] Zarka Cvetonivic, Edward G. Freedman, Charles Nofsinger, 
      "Efficient Decomposition and Performance of Parallel PDE, FFT, 

        Monte Carlo Simulations, Simplex, and Sparse Solvers". Proceedings 

       of the 1990 ACM/IEEE conference on Super Computing. 455-464. 
       1990. 


