



Abstract—This paper presents the first hardware

implementation of the Successive Over-Relaxation (SOR)

method for the solution of a 2D Poisson equation. We use

Handel-C, a high level language for the implementation of

algorithms on hardware, to code and implement our design

which we map onto high-performance Field Programmable

Gate Arrays (FPGAs), such as, Virtex II Pro, Altera Stratix,

and Spartan3L. We use the FPGA vendors' proprietary

software to analyze the design implementation performance.

Besides, we implement SOR using C++ and compare our

timing results with the obtained C++ version results. Our

findings prove that SOR in hardware outperforms SOR in

software.

Index Terms—Hardware Design, High Performance

Computing, Iterative Methods, Parallelization.

I. INTRODUCTION

 A large number of physical phenomena can be expressed

as systems of linear equations. Numerical solutions for

these equations allow us to glean valuable information

about the system at hand. There are two basic approaches

for solving linear systems: Direct Methods and Iterative

Methods. In the first approach, a finite number of

operations are performed to find the exact solution. In the

second approach, an initial approximate of the solution is

generated, then this initial guess is used to generate another

approximate solution, which is more accurate than the

previous one [13]. The robustness of applying iterative

methods over direct methods is shown in different areas

including: circuit analysis and design, weather forecasting

and analyzing financial market trends.

The well known iterative methods are: Gauss-Seidel,

Multigrid, Jacobi and SOR which is of a particular interest

in this paper. SOR has been devised to accelerate the

Manuscript received November 9, 2006. This work was supported by

the Lebanese American University.

Safaa J. Kasbah is with the Division of Computer Science and

Mathematics, Lebanese American University, Beirut, Lebanon (phone:
961-3-788402; email: safaa.kasbah@lau.edu.lb).

Ramzi A. Haraty is with the Division of Computer Science and

Mathematics, Lebanese American University, Beirut, Lebanon (e-mail:
rharaty@lau.edu.lb).

Issam W. Damaj is with the Department of Electrical and Computer

Engineer, Dhofar University, Salalah, Sultanate of Oman (e-mail:
i_damaj@du.edu.om).

convergence of Gauss-Seidel and Jacobi, [4] by introducing

a new parameter, , referred to as the relaxation factor.

The SOR rate of convergence is highly dependent on the

relaxation factor. The main difficulty of using SOR is

finding a good estimate of the relaxation factor [13]. A

number of techniques have been proposed for determining

the exact value of  which accelerates the rate of

convergence of the method [4], [13].

All available iterative methods packages, including SOR,

are done in software. Examples are the: ITPACK 3A,

ITPACK 3B, ITPACK 2C, ITPACK 2D, and the ELLPACK

package [2], [9]. Several sequential and parallel techniques

were used in these packages to accelerate the method [14].

The emergence of the new computing paradigm,

Reconfigurable Computing (RC), introduces novel

techniques for accelerating certain classes of applications

including signal processing (e.g., weather forecasting,

seismic data processing, Magnetic Resonance Imaging

(MRI), adaptive filters), cryptography and DNA

matching[11]. RC-systems combine the flexibility offered

by software and the performance offered by hardware [5]. It

requires a reconfigurable hardware, such as an FPGA, and a

software design environment that aids in the creation of

configurations for the reconfigurable hardware [11].

In [7], we present the first hardware implementation of

an iterative method, the Multigrid. The speedup achieved

demonstrates that hardware design can be suited for such

computational intensive applications. Toward proving the

hypothesis that accelerated versions of the iterative methods

can be realized in hardware, we undertook the first

hardware implementation of the Successive Over-

Relaxation method; using the same FPGAs that were used

in [6]-[8].

In this paper, we study the feasibility of implementing

SOR in reconfigurable hardware. We use Handel-C, a

higher level design tool to code our design, which is

analyzed, synthesized, and placed and routed using the

FPGAs proprietary software (DK Design Suite, Xilinx ISE

8.1i and Quartus II 5.1). We target Virtex II Pro, Altera

Stratix and Spartan3L which is embedded in the RC10

FPGA-based system from Celoxica. We report our timing

results when targeting Virtex II Pro and compare them with

The Successive Over-Relaxation Method in

Reconfigurable Hardware

Safaa J. Kasbah, Ramzi A. Haraty, and Issam W. Damaj

a software version results written in C++ and running on a

General Purpose Processor.

The remainder of this paper is organized as follows: In

Section 2, the successive over-relaxation method is

explained. In Section 3 we study the feasibility of

implementing SOR on reconfigurable hardware. We present

a parallelized version of the algorithm using the ‘par’

construct from Handel-C. The performance results are then

analyzed and presented in Section 4. In Section 5, we

conclude the paper and point out possible future work.

II. DESCRIPTION OF THE ALGORITHM

The successive over-relaxation method is an iterative

method used for finding the solution of elliptic differential

equations. SOR has been devised to accelerate the

convergence of Gauss-Seidel and Jacobi [4], by introducing

a new parameter, , referred to as the relaxation factor.

Given the linear system of equations:

bA 

the matrix A can be written as

ULDA 

where D , U and L denote the diagonal, strictly upper

triangular, and strictly lower triangular part of matrix A

[13].

Using the successive over relaxation technique, the

solution of the PDE is obtained using:

bLDxDULDx kk 1)1(1)()(])1([)(   (1)

where
kx represents the

thk iterate.

The SOR rate of convergence strongly depends on the

choice of the relaxation factor,  [2]. Extensive work has

been done on finding a good estimate of this factor in the

[0, 2] interval [2] [9].

Recent studies have shown that for the case where:

 1 : SOR simplifies to Gauss-Seidel method

[10].

 1 or 2 : SOR fails to converge[10].

 1 : SOR used to speedup convergence of a

slow-converging process [13].

 1 : helps to establish convergence of

diverging iterative process [13].

III. IMPLEMENTATION

The successive over-relaxation method was designed

using Handel-C, a higher-level hardware design tool.

Handel-C comes packaged with DK Design Suite from

Celoxica. It allows the designer to focus more on the

specification of the algorithm rather than adopting a

structural approach to coding [3]. Handel-C syntax is

similar to the ANSI-C with additional extensions for

expressing parallelism [3]. One of the most important

features in Handel-C which is used in our implementation

is the ‘par’ construct that allows statements in a block to be

executed in parallel and in the same clock cycle.

Our design has been tested using the Handel-C simulator;

afterwards, we have targeted a Xilinx Virtex II Pro FPGA,

an Altera Stratix FPGA, and Spartan3L which is embedded

in an RC10 FPGA-based system from Celoxica. We have

used the proprietary software provided by the devices

vendors' to synthesize, place and route, and analyze the

design [1] [3] [12].

In Fig. 1 and Fig. 2, we present a parallel and a

sequential version of SOR. In the first version, we used the

'par' construct whenever it was possible to execute more

than one instruction in parallel and in the same clock cycle

without affecting the logic of the source code. The dots in

the combined flowchart/concurrent process model which is

shown in Fig. 1 represent replicated instances. Fig. 2 shows

a traditional way of sequentially executing instructions on a

general purpose processor. Executing instructions in

parallel have shown a substantial improvement in the

execution of the algorithm.

To handle floating point arithmetic operations which are

essential in finding the solution to PDE using iterative

methods, we used the Pipelined Floating Point Library

provided by Celoxica [3]. However, an unresolved bug in

the current version of the DK simulator limited the usage of

the floating point operations to four in the design. The only

possible way to avoid this failure was to convert/Unpack

the floating point numbers to integers and perform integer

arithmetic on the obtained unpacked numbers. Though it

costs more logic to be generated, the integer operations on

the unpacked floating point numbers have a minor effect on

the total number of the design's clock cycles.

j=1

j<=L

i=1

op1=a[i-1][j]+a[i+1][j] op2=a[i][j-1]+a[i][j+1]

opRes=op1+op2 sq_h=myh*myh

temp1=sq_h*rho[i][j]

addCycles=FloatPipeAddCy

cles

addCycles!=0

op3=1-omega

op4=op3*b[i][j]

op5=op4+omega

op6=op5/4

j++

addCycles--

tmp2=oprRes+tmp1

b[i][j]=tmp2*op6

(i+j)%2 !=0 Y

i=1 i=2 i=3

N

Y

Y

N

Odd Sites

Even Sites

Similar to Odd

Sites
N

Fig. 1: SOR parallel version, showing the combined flowchart/concurrent process model. The dots represent replicated instancess.

i<=L j=1

j<=L

i++

i=1

op1=a[i-1][j]+a[i+1][j]

op2=a[i][j-1]+a[i][j+1]

opRes=op1+op2

sq_h=myh*myh

temp1=sq_h*rho[i][j]

addCycles=FloatPipeAddCy

cles

addCycles!=0

op3=1-omega

op4=op3*b[i][j]

op5=op4+omega

op6=op5/4

j++

addCycles--

tmp2=oprRes+tmp1

b[i][j]=tmp2*op6

N

Y

N

N

Y

(i+j)%2 !=0

Y

op1=a[i-1][j]+a[i+1][j]

op2=a[i][j-1]+a[i][j+1]

opRes=op1+op2

sq_h=myh*myh

temp1=sq_h*rho[i][j]

addCycles=FloatPipeAddCy

cles

addCycles!=0

op3=1-omega

op4=op3*b[i][j]

op5=op4+omega

op6=op5/4

j++

addCycles--

tmp2=oprRes+tmp1

b[i][j]=tmp2*op6

N

Y

i=0

j=0

N

Fig. 2: SOR flowchart, sequential version

IV. EXPERIMENTAL RESULTS

As mentioned before, the main objective of this paper is:

i) studying the feasibility of implementing SOR method in

hardware and ii) realizing an accelerated version of the

method.

The first objective is met by targeting high-performance

FPGAs: Virtex II Pro (2vp7ff672-7), Altera Stratix

(ep1s10f484c5), and Spartan3L (3s1500lfg320-4) which is

embedded on RC10 board from Celoxica. The second

objective is met by comparing the timing results obtained,

with a software version written in C++ and compiled using

Microsoft Visual Studio .Net.

All the test cases were carried out on a Pentium (M)

processor 2.0GHz, 1.99GB of RAM. The relaxation factor

 was chosen to be 1.5 [10].

We use the FPGA vendor's tools to analyze and report the

performance results of each FPGA. The synthesis results

obtained, for different problem sizes, when targeting Virtex

II Pro, Altera Stratix, and Spartan3L are reported in Tables

1, 2 and 3, respectively.

Table 1: Virtex II Pro Synthesis Results

Mesh Size Occupied Slices Total Equivalent Gate Count

8x8 128 2,918

16x16 136 3,033

32x32 219 4,807

64x64 265 5,978

128x128 315 7,125

256x256 610 14,538

512x512 1,098 23,012

1024x1024 1,601 31,848

2048x2848 2,289 53,476

Table 2: RC10 Spartan3L Synthesis Results

Mesh Size Occupied Slices Total Equivalent Gate Count

8x8 302 279,010

16x16 499 281,001

32x32 589 282,997

64x64 745 284,000

128x128 877 285,872

256x256 1,201 297,134

512x512 2,010 299,858

Table 3: Altera Stratix Synthesis Results

Mesh Size
Total Logic

Elements

Logic Element

usage by nb. of

LUT inputs

Total

Registers

8x8 519 250 120

16x16 601 310 155

32x32 810 501 199

64x64 999 637 280

128x128 1,274 720 347

256x256 1,510 890 948

512x512 2,286 1,087 501

1024x1024 2,901 1,450 569

2048x2848 3,286 1,798 640

Fig. 3 shows SOR execution time when targeting Virtex II

Pro FPGA versus the execution time of SOR in C++. We

started with a problem size of 8x8 and reached 2048x2048.

Obviously, one can notice the acceleration of the method

when moving from software implementation to hardware

implementation. The speedup of the design, for different

problem sizes, is shown in Table 4 and calculated as the

ratio of Execution Time (C++) / Execution Time (Handel-

C).

V. CONCLUSION

In this paper, we have studied the feasibility of

implementing the Successive Over- Relaxation (SOR)

method on reconfigurable hardware. We used a hardware

compiler, Handel-C, to code and implement our design

which we map onto high-performance FPGAs: Virtex II

Pro, Altera Stratix, and Spartan3L which is embedded in

the RC10 board from Celoxica. We used the FPGAs

vendor's tool to analyze the performance of our hardware

implementation. For testing purposes, we designed a

software version of the algorithm and compiled it using

Microsoft Visual Studio .Net.

C++ Handel-C

Fig. 3: SOR execution time results in both versions,

Handel-C and C++.

Table 4: Design Speedup

Mesh Size Speedup
8x8 1.76

16x16 188

32x32 6.71

64x64 5.70

128x128 1.51

256x256 1.49

512x512 3.03

1024x1024 2.58

2048x2848 3.38

The software implementation results were compared to the

hardware implementation results. The synthesis results

prove that SOR is suitable for FPGA implementation; the

timing results prove that SOR on hardware outperforms

SOR on GPP. In the near future, in addition to realizing

other versions of SOR, Modified SOR (MSOR), Symmetric

SOR (SSOR) and Unsymmetric SOR (USOR), on different

classes of reconfigurable hardware, we plan to implement a

third iterative method, Jacobi, on the same classes of

FPGAs that were used in [8] and in this paper.

Once the three methods are realized on reconfigurable

hardware, it will become possible to find the modeled

system's solution, using the most suitable iterative method,

at low cost.

REFERENCES

[1] Altera Inc., www.altera.com. 2006

[2] Bailey W., "The Successive Over Relaxation Algorithm and its

 application to Numerical Solutions of Elliptic Partial Differential
 Equations". B.Sc. Project, Dublin Institute of Technology. 2003.

[3] Celoxica, www.celoxica.com. 2006.

[4] Evans G., Blackledge J. and Yardley P., Numerical Methods for Partial
 Differential Equations. Springer-Verlag. London 2000.

[5] Compton K. and Hauck S. "Reconfigurable Computing: A Survey of

 Systems and Software". In ACM Computing Surveys, vol. 34, no. 2,
 pp. 171-210, June 2002.

[6] Kasbah S., Damaj I., "A hardware implementation of Multigrid

 Algorithms". Poster Session: 17th International Conference on Domain

 Decomposition Methods, Austria July 2006.

[7] Kasbah S., "Multigrid Solvers in Reconfigurable Hardware". Master
 Thesis, Division of Computer Science and Mathematics, Lebanese

 American University. 2006.

 [8] Kasbah S., Damaj, I., and Haraty R., “Multigrid Solvers in

 Reconfigurable Hardware”, Journal of Computational and Applied
 Mathematics., to be published.

[9] Kincaid D., Celebrating Fifty Years of David M. Young's Successive

 Overrelaxation Iterative Method. Numerical Mathematics and
 Advanced Applications, M. Feistauer, V. Dolejsi, P. Knobloch, K.

 Najzar (Eds.),

 Springer-Verlag, Berlin Heidelberg, pp. 549-558. , 2004.
[10] Kulsrud H. E., "A practical technique for the determination of the

 optimum relaxation factor of the successive over-relaxation method".

 communications of the ACM vol. 4 nb. 4. pp.184-187. 1961.
[11] Li Y., Callahan T., Darnell E., Harr R., Kurkure U., and Stockwood

 J., "Hardware-Software Co-Design of Embedded Reconfigurable

 Architectures," In 37th Design Automation Conference, Los Angeles,
 CA, pp. 507-512, 2000.

[12] Xilinx. www.xilinx.com. 2006.

[13] Young D., "Iterative Methods for Solving Partial Difference
 Equations of Elliptic Type", Ph.D. Thesis, Department of

 Mathematics, Harvard University, 1950.

[14] Zarka Cvetonivic, Edward G. Freedman, Charles Nofsinger,
 "Efficient Decomposition and Performance of Parallel PDE, FFT,

 Monte Carlo Simulations, Simplex, and Sparse Solvers". Proceedings

 of the 1990 ACM/IEEE conference on Super Computing. 455-464.
 1990.

