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ABSTRACT 
     Wireless is the next generation networking technology. 
The security of such technology is very critical because 
its physical layer is the electro-magnetic waves that can 
be easily intercepted by anyone. The original security 
protocol for 802.11 wireless networks is called WEP 
(Wired Equivalent Privacy), it is a protocol that is based 
on symmetric-key encryption algorithm RC4 (Rivest 
Cipher 4). Unfortunately this protocol had many flaws 
that made it exposed to many attacks. This paper presents 
a set of improvements for WEP: these improvements 
convert WEP to a hybrid cryptosystem, a system that is 
based on both a symmetric-key algorithm and an 
asymmetric-key algorithm. 
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1.  INTRODUCTION 
 
     Back in 1999, wireless networking started its growth 
with the publication by the Institute of Electrical and 
Electronics Engineers (IEEE) of the first commercially 
practical wireless standards. Today, as the cost of wireless 
technology declined and the quality increased, it became 
cost-effective for users and enterprises to integrate it.  
 
     This technology offers flexibility, mobility, cost 
reduction as well as a fairly high transmission rate. 
Wireless networking does, however, have security 
concerns: this technology creates the possibility of 
accidental or intentional intrusions into a network, 
because of the nature of the physical layer of this 
technology. To overcome this problem, the IEEE 802.11 
committee implemented a protocol that claims to offer 
comparable confidentiality to a traditional wired network, 
hence its name Wired Equivalent Privacy: WEP is a 
symmetric cipher that uses the same key to encrypt and 
decrypt. This key is composed of two parts: the Shared 
Key and a variable part called the Initialization Vector 
that changes for each frame.  
 
     As wireless networks began to grow in popularity, a 
group of scientists discovered serious flaws in the 
implementation of this protocol because little review was 
performed on it during the IEEE approval process for 
802.11 security mechanisms.  

     In this paper we present a set of improvements for 
Wired Equivalent Privacy networks. The rest of the paper 
is organized as follows: section 2 presents the weaknesses 
associated with WEP. Section 3 presents modifications to 
RC4.  Section 4 discusses the management of shared 
keys. Section 5 presents the authentication component. 
And section 6 presents the conclusion. 
 
2.  WEP WEAKNESS 
 
     WEP has many flaws, we start by explaining the 
process of WEP, and then we list its flaws. 
 
2.1 WEP Process 
 
     WEP is a protocol that uses a symmetric stream cipher 
called Rivest Cipher 4, which is composed of the Key 
Scheduling Algorithm (KSA) and the Pseudo Random 
Generation Algorithm (PRGA). The original WEP uses a 
64-bit key, but a later implementation uses a 128-bit WEP 
key (Rappaport, T. 2002). This key is composed of two 
parts: one fixed part, of length 40 or 104 bits specified by 
the user and called Shared Key, and another variable part, 
of 24 bits, called the Initialization Vector that changes for 
every frame and is concatenated with the Shared Key to 
form the entire encryption key. This implies that the same 
Shared Key is used to encrypt all frames, but the IV added 
to the Shared Key makes every key unique to make sure 
that no two frames are encrypted using key that was used 
before. 
  
     The first algorithm of WEP is the Key Scheduling 
Algorithm (Figure1). The goal of this algorithm is to 
scramble the state array S, based on the key array K. 
 

1. K[] = Key array 
2. Initialization of state array:  
3. for i = 0 ... N - 1  
4.   S[i] = i  
5. j = 0  
6. Scrambling:  
7.       for i = 0 ... N - 1  
8.         j = ( j + S[i] + K[i mod l] ) mod N  
9.         Swap(S[i], S[j])   
 

Figure 1 – Key Scheduling Algorithm 
 



     The second algorithm of WEP is the Pseudo-Random 
Generation Algorithm, or PRGA (Figure2). This 
algorithm uses the scrambled array S to produce 
keystream as long as they are needed. Each byte of the 
keystream is XORed with the plaintext of the frame to 
produce the ciphertext. When the frame reaches its end, 
PRGA stops generating keystream. 
 
 

1. Initialization:  
2. i = 0  
3. j = 0  
4. While need output:         
5.     i = (i + 1) mod N  
6.     j = (j + S[i]) mod N  
7.     Swap(S[i], S[j])  
8.     Output z = S[ (S[i] + S[j]) mod N ] 
9. The byte z XORed with plaintext 
 

Figure 2 – Pseudo-Random Generation Algorithm 
 
     For each new frame, RC4 is restarted using a new 
WEP key (Shared Key concatenated with an IV). 
 
     The IV is sent in clear with every frame. On the 
receiving station, and for decryption, it’s concatenated 
with the Shared Key to produce the same WEP key that 
was used in the encryption process. This key, with RC4, 
would produce the same keystream, which are 
concatenated with the ciphertext to reproduce the 
plaintext. 
 
2.2 Lack of Key Management 
      
     The 802.11 standard does not specify means of 
deploying Shared Keys to WLAN stations (Gast, M. 
2005), other than manually configuring each one of them 
with the same key. On a small network, with only a few 
stations, this may not seem like a problem. However, for a 
network with ten or more WLAN devices, changing a key 
on each piece of equipment is a very hard task. As a 
result, most Shared Keys are used for an extremely long 
period of time, thus increasing the chances that an 
attacker discovers the key. To make matters worse, in 
most cases, these keys are never changed which results in 
a very weak security scheme. 
 
2.3 IV Collision 
 
     WEP uses a three-byte IV for each frame transmitted 
over the WLAN. When the data is sent, the IV is pre-
pended to the encrypted packet. This ensures the 
receiving party has all the information it needs to decrypt 
the data. However, if we take a closer look at the 
statistical nature of this process, we can quickly see a 
potential problem: the total size of the IV is 24 bits: if we 
calculate all the possible IVs, we would have a list of 224 
different possible keys. Although this might sound like a 
huge number (16,777,216), but one could expect to start 
seeing repeats, also known as collisions, after just about 
10,000 frame transmissions. 

 
2.4 Weak IVs 
 
     In their paper, "Weaknesses in the Key Scheduling 
Algorithm of RC4" (Fluhrer, S., Mantin, I. and Shamir, A. 
2001), the authors have discovered a very important flaw 
in the use of Initialization Vector in the KSA. They 
indicated that the use of some IVs, called weak IVs, can 
leak information about the Shared Key used. This attack 
is based on the first output byte of the PRGA algorithm. 
As we know, the IV in WEP has a length of 3 bytes. The 
format of a weak IV is as follows: 
 

IV byte1       IV byte2        IV byte3
B+3              255                  X 

 
     For example, the IV (3, 255, 7) is considered weak, 
and has the chance of leaking information on the first byte 
of the Shared Key (B=0). 
 
2.5 Poor Authentication 
 
     WEP’s Shared Key Authentication is based on the 
Shared Key: a client should prove knowledge of it in 
order to be authenticated. Shared Key Authentication uses 
a challenge send by the Access Point that the station 
XORs with its Shared Key to produce the challenge 
response. The Access Point then compares the response 
with its own calculations (Figure 3). 
 

 
Figure 3 – WEP Authentication 

 
     In the case of the Shared Key Authentication, a hacker 
can sniff both the plaintext challenge and its 
corresponding encrypted response. Therefore, simply by 
XORing the two together, he has a copy of the keystream 
produced by RC4. 
 
3.  RC4 MODIFICATION 
 
     In its implementation in WEP, RC4 has many flaws: 
we force the use of 128-bit keys only, and we hash that 
key using MD5 to give another 128-bit output. This 
output key is then used in RC4. 
 
3.1 Using 128-bit WEP Keys Only 
 
     As we saw earlier, WEP allows the use of a 40-bit or 
104-bit Shared Key to be concatenated with an IV of 
length 24 bits to form the entire WEP key of length 64 or 
128 bits which is given as input to the RC4 algorithm. In 
our use of RC4, we will only allow the use of the 128-bit 
WEP Key: an IV of length 24 bits will be concatenated 



with a 104-bit Shared Key only to form the entire WEP 
key. 
 
3.2 Hashing WEP Key 
 
     As we saw before, Fluhrer, Mantin and Shamir have 
discovered a serious flaw in WEP: some IVs called weak 
IVs can reveal information on the Shared Key. 
 
     Our approach is to hash the key before feeding it to 
KSA: MD5 (Rivest, R., 1992) will be used to take the key 
as input and produce a 128-bit hash value that will be the 
new key. This way each frames will be encrypted using a 
totally different key, no two frames will be encrypted 
using the same Shared Key part because using a different 
IV with the same Shared Key and hashing their 
concatenation would give a totally different hash result: 
this approach solves the problem of weak IVs because 
K[3]… K[15] is different for every frame (as well as 
K[0], K[1], K[2] ). 
 
     For the sending station, the hash is easily calculated: a 
random IV is concatenated to the Shared Key (just like 
WEP works), but instead of immediately using this key 
with RC4, it is hashed to produce a new 128-bit key that 
is fed to the RC4 algorithm. For the receiving station that 
holds the same Shared Key, when it receives the 
encrypted frames, it gets the IV used. Once the IV is 
known, it is concatenated to the Shared Key and hashed; 
the result is the same hash that was produced by the 
sending station. This resulting hash is used as the key that 
is used to decrypt the encrypted frame: it produces the 
same keystream that was used to encrypt the frame 
 
4.  MANAGING SHARED KEYS 
 
     WEP, the original 802.11 encryption protocol does not 
provide any form of key management.. We present a new 
Key Management scheme for WEP that is based on an 
asymmetric cryptosystem.  
 
4.1 Hybrid Cryptosystem 
 
     Symmetric and asymmetric algorithms each have their 
own advantages and disadvantages: Symmetric ciphers 
are much faster than asymmetric ciphers (Schneier, B. 
1996), but have the problem of key distribution. 
Asymmetric algorithms have a pair of keys and do not 
worry about key distribution because the private key is 
never shared, but these algorithms are slow. 
 
     A Hybrid Cryptosystem is a system that combines 
some of the best features of both symmetric and 
asymmetric encryption protocols: both types of protocols 
are used in the same system, preserving the speed of 
symmetric algorithms and the security of asymmetric 
algorithms 
 
     Our proposed solution is to use a Hybrid Cryptosystem 
that keep using the RC4 symmetric encryption to encrypt 
every frame, but add an asymmetric cipher to act as a Key 

Exchange protocol, that will only be used to encrypt and 
distribute the changing Shared Key periodically in a 
secure way. 
 
     The Access Point will use the public key of each 
station to encrypt the RC4 Shared Key and send it to it 
securely. The corresponding station decrypts the Shared 
Key using its own private key. 
 
4.2 RSA Cryptosystem 
 
     The RSA algorithm (Figure 4), named after its 
creators, Ron Rivest, Adi Shamir and Len Adleman 
(Rivest, R., Shamir, A. and Adleman, L. 1978), was 
invented in 1977 and is the most popular and widely used 
asymmetric encryption system today. This algorithm is a 
block cipher which provides security, authentication and 
digital signature. Its security is based on the fact that 
finding large prime numbers is computationally easy, but 
factoring the product of two such numbers appears 
computationally infeasible. 
 

 1. Initialize P and Q (2 large primes) 
 2. Calculation:  
 3. N=P*Q 
 4. φ(N)=(P-1)(Q-1) 
 5. D co-prime to φ(N)  GCD (D, φ(N)) = 1 
 6. E  E*D ≡ 1(mod φ(N)) 
 7. Public key = (E, N)   
 8. Private key = (D, N) 
 9. Ciphertext C = ME mod N 
 10. Plaintext  M = CD mod N 
 

Figure 4 – RSA Algorithm 
 
     In comparison with ElGamal (ElGamal, T. 1985) and 
Rabin asymmetric cryptosystems, RSA was picked 
because: 
 

1. RSA is both an encryption scheme as well as a 
digital signature method, unlike ElGamal that 
needs a separate signature system in order to 
digitally sign its messages. 

2. Rabin’s decryption is way too slow compared to 
the other two systems. 

3. With RSA, according to the NESSIE consortium, 
1024-bit RSA keys should remain "secure until 
at least the year 2010" (NESSIE Consortium 
2003), therefore we are going to use keys of 
length 1024 bits. 

4. The SafeXcel 1741 chipset that we’ll examine in 
detail in the next section, supports a maximum of 
1024-bit RSA key 

 
4.3 Encryption Chipset – The SafeXcel 1741 
 
     Our hybrid system relies on the Access Point: as we 
will see, the Access Point will be involved in heavy RSA 
encryption and decryption calculations. For this reason, 
the much faster hardware encryption and decryption 



should be used in the Access Point to match the high 
speed processing power of any computer today. 
 
     Many different RSA hardware chips exist in the 
market today. One of these is the the SafeXcel produced 
by SafeNet technology. The SafeXcel 1741 was chosen 
because it has the following features: 
 

1. Supports MD5 hash function with a rate of 451 
Mbps as well as the symmetric cipher RC4. 

2. Supports the asymmetric cipher RSA: 
o 1024-bit public key encryption and 

signature verification in 0..85 ms 
o 1024-bit private key decryption and 

signature in 8.4 ms 
3. Hardware based and non-deterministic Random 

Number Generator (RNG) 
4. Can internally generate session keys (Shared 

Keys for our system) as well as Initialization 
Vectors. 

5. Cost-effective: We e-mailed SafeNet and they 
informed us that an Access Point equipped with 
this chip would cost just about 25$ more than a 
simple WEP-only Access Point. 
 

     We assume that this RSA chip is used in the Access 
Points that we are going to test throughout this work. 
 
4.4 Key Distribution 
 
     Once the asymmetric cipher was chosen to be RSA, it 
is time to describe how our system distributes the Shared 
Key to be used by stations once they are authenticated and 
when that key is changed by the Access Point that is 
equipped with the SafeXcel chipset. 
 
4.4.1 Getting the Initial Shared Key 
 
     Upon a successful authentication, as we’ll see later on, 
the Access Point would have all the stations’ 1024-bit 
public keys and each station would have the Access 
Point’s public key. The process of getting the Shared Key 
is: 
 

0. At t=0, Alice checks the Shared Key in use and 
forms a frame containing it and with destination 
Bob. 

1. At t=1, Alice encrypts (signs) the MD5 hash 
value of the frame with privateAlice to form the 
Digital sig. = privateAlice(MD5(frame)) 

2. At t=1, Alice encrypts the frame using the public 
key of Bob = publicBob(frame) 

3. At t=2, Alice sends the encrypted frame with the 
signature to Bob and waits for an 
Acknowledgement. 

4. At t=3, Bob receives the frame and decrypts it 
using privateBob 

5. At t=4, Bob decrypts (verifies) the digital 
signature using publicAlice and compares the 
result obtained with the result of its own MD5 
hash computation. If these 2 match, Bob 

concludes that the frame comes from Alice and 
is not altered. 

6. At t=5, Bob sends the ACK to Alice. 
7. Bob has the Shared Key now. It can start using it 

to encrypt frames using RC4 
 
4.4.2 Shared Key Changing 
 
     In their paper (Stubblefield, A., Ioannidis, J. and 
Rubin, A. 2001), the authors recommended "securely re-
keying each user after every approximately 10,000 
packets": they showed that re-keying every 10,000 
packets would prevent most attacks because the key is 
changing often.  
 
     Using a frame counter in an inactive wireless network 
is not efficient, therefore the better approach is to use a 
time counter: based on the results of different tests on the 
usage of 10,000 frames and on the fact that we are 
hashing the WEP key before using it (an additional 
security layer) and that the average number of stations 
associated to an Access Point is 30 (Masafumi O. 2003). 
We concluded that an interval time of 5 minutes (300 
seconds) for changing the Shared Key should be enough. 
 
     Let us assume that the Access Point reached the 300-
second mark and is ready to change the Shared Key on all 
its associated stations Bob, Clara and Dan. The steps are: 
 

0. At t=0, Alice randomly generates a 104-bit 
Shared Key= SharedKey 

1. At t=1, Alice encrypts every frame (different 
destinations) that contains the same Shared Key: 
(SharedKey) by the public key of every 
associated station: the number of different 
encryptions is equal to the number of associated 
stations.  

• publicBob(frame1) 
• publicClara(frame2) 
• publicDan(frame3) 

2. At t=2, Alice encrypts the MD5 hash value of 
each one of these different frames with 
Private(Alice) to form a different Digital 
signature for each station. 

• privateAlice(MD5(frame1)) 
• privateAlice(MD5(frame2)) 
• privateAlice(MD5(frame3)) 

3. At t=3, Alice sends this signed encrypted Shared 
Key to every station (each encrypted with the 
corresponding public key). Now every station 
has 2 Shared keys: the old one in use and the 
newer one. 

4. At t=4, every station decrypts the frame using its 
own private key: 

• Bob decrypts the frame with 
privateBob(frame1) 

• Clara decrypts the frame with 
privateClara(frame2) 

• Dan decrypts the frame with 
privateDan(frame3) 



5. At t=5, every station decrypts the digital 
signature (signature verification) and compares 
the result obtained with the computed hash. If 
these 2 matches, every station concludes that the 
frame comes from Alice and is not altered. 

6. At t=6, every station send an Acknowledge 
frame indicating a successful reception of the 
new Shared Key. 

7. At t=7, Alice receives the ACK from every 
station. If an ACK frame is missing for an 
associated station, the Access Point retries a 
maximum of three times until it receives the 
ACK. 

8. At t=8, Alice sends a frame (switchingFrame) 
that switches the Shared Key on every station 
and on the Access Point itself. The counter is 
restarted when the first ACK frame is received 
indicating a successful key switching. 

9. Everyone is using the new Shared Key now 
 
5.  AUTHENTICATION 
 
     The purpose of authentication is first to prove that a 
station is really who it claims to be (entity authentication 
or simply, identification) and second, to prove message 
origin and integrity: makes sure that the message has not 
been forged and changed in the way (message 
authentication).  
 
5.1 Message Authentication 
    
     Our Key Management scheme uses a public key 
system where two keys are generated per station and 
Access Point, a public key and a private key. Using this 
mechanism by itself does not protect against message 
forgery: a man-in-the-middle attack can occur when a 
station catches messages and send them as if it is the 
legitimate source. A subtle and important variant of this 
method can solve this problem: it requires an entity to 
sign its messages, therefore digital signature is needed.  
 
     Message signing works in the reverse way from 
encryption (Davies, J. A. & Price, W. L. 1980). The private key 
is used to create a signature and the corresponding public 
key checks the signature. In most of the cases, the hash 
value of a message is encrypted it with the private key. 
The result is added to the end of the message. Anyone 
who receives the message can decrypt the signature using 
the user's public key. 
 
5.2 Entity Authentication 
 
     Message authentication will be used in Entity 
authentication and identification which makes sure that 
only authorized stations can join aparticular Access Point.  
 
5.2.1 Authentication Process 
 
     The administrator logs on to the Access Point and 
creates a new username and his corresponding password. 
The password is stored as an MD5 hash.  The same 

username and password should be used in the station to be 
authenticated. 
 
     To begin the authentication process: 
 

0. At t=0, Bob probes Alice sending it publicBob.  
1. At t=1 and upon receiving the public key of bob, 

Alice send its own public key publicAlice to 
Bob. If the Acknowledge packet of each key is 
not received, the key in question is resent. From 
now on all communication between these two 
entities is always encrypted using each other’s 
public key. 

2. At t=2, a random challenge text of the same 
length of the hash of the password is generated 
by the Access Point. (The AP has a list of all 
username/password pairs) 

3. At t-3, Alice XORs the challenge with the hash 
value of the password of Bob. The result is a 
128-bit length string named Result1 that is kept 
secret in the Access Point. 

4. At t=4, Alice encrypts the frame using the public 
key of Bob = publicBob(frame) 

5. At t=5, Alice encrypts the MD5 hash value of the 
frame with privateAlice to form the Digital 
signature = privateAlice(MD5(frame)) 

6. At t=6, Alice sends the encrypted frame with the 
signature to Bob and waits for an 
Acknowledgement. 

7. At t=7, Bob receives the frame and decrypts it 
using privateBob 

8. At t=8, Bob decrypts (verifies) the digital 
signature using publicAlice and compares the 
result obtained with the result of its own MD5 
hash computation. If these 2 match, Bob 
concludes that the frame comes from Alice and 
is not altered. 

9. At t=9, Bob sends the ACK 
10. At t=10, bob XORs PassMD5(Bob) with the 

challenge obtained. The result is a 128-bit length 
string named Result2. 

11. At t=11, Bob encrypts the frame using the public 
key of Alice = publicAlice(frame) 

12. At t=12, Bob computes the MD5 hash of the 
frame and encrypts the result with PrivateBob to 
form the Digital signature = 
privateBob(MD5(frame)) 

13. At t=13, Bob sends the encrypted frame with the 
signature to Alice and waits for an 
Acknowledgement. 

14. At t=14, Alice receives the frame and decrypts it 
using privateAlice 

15. At t=15, Alice decrypts (verifies) the digital 
signature using publicBob and compares the 
result obtained with the result of its own MD5 
hash computation. If these 2 match, Alice 
concludes that the frame comes from Bob and is 
not altered. 

16. At t=16, Alice sends the ACK 



17. At t=17, Alice compares Result2 with Result1. If 
they match, Alice concludes that Bob knows the 
password. So Bob is authenticated by Alice. 

18. At t=18, Alice send Bob an "Authentication 
Success" message indicating a successful 
authentication. Bob is now associated to Alice. 

19. At t=19, Bob replies with an Acknowledge. 
 
     Figure 5 shows the Authentication between a station S 
and an Access Point AP. Note that messages in brackets 
are encrypted 
 
 

 
Figure 5 – Authentication process 

 
6.  CONCLUSION 
 
     Our Hybrid Cryptosystem security specification is a 
major enhancement over the original WEP. The major 
component of WEP, that is, the use of the symmetric 
cipher RC4 to encrypt every frame has not been changed; 
however, our system adds a series of corrective tools 
around it to make it more secure. 
 
     First, the use of 128-bit WEP key is now mandatory. 
Moreover, an MD5 hash function was added before the 
use of any key in RC4, this hash makes sure that no two 
frames are encrypted using the same Shared Key part as it 
is used to be in WEP. Every frame has a totally different 
symmetric key to be used for encryption and decryption.  
 
     Second, a Key Management scheme was added to 
solve the problem of static Shared Keys: even though we 
are hashing before using the key in RC4, but changing the 
Shared Key is still needed.  
 
     Finally, an authentication mechanism was included: it 
is based on an encrypted challenge with an encrypted 
challenge reply. The challenge and its corresponding 
challenge response are also digitally signed.  
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