

SECURING WIRELESS NETWORKS WITH ENHANCED WEP

Ramzi A. Haraty and Walid El Horr

Lebanese American University
Division of Computer Science & Mathematics

P. O. Box 13-5053 Chouran
Beirut, Lebanon 1102 2801

Email: {rharaty, walid.horr@lau.edu.lb}

ABSTRACT
 Wireless is the next generation networking technology.
The security of such technology is very critical because
its physical layer is the electro-magnetic waves that can
be easily intercepted by anyone. The original security
protocol for 802.11 wireless networks is called WEP
(Wired Equivalent Privacy), it is a protocol that is based
on symmetric-key encryption algorithm RC4 (Rivest
Cipher 4). Unfortunately this protocol had many flaws
that made it exposed to many attacks. This paper presents
a set of improvements for WEP: these improvements
convert WEP to a hybrid cryptosystem, a system that is
based on both a symmetric-key algorithm and an
asymmetric-key algorithm.

KEY WORDS
802.11, Wireless, Security, WEP, Cryptography, Public-
Key, Private-Key.

1. INTRODUCTION

 Back in 1999, wireless networking started its growth
with the publication by the Institute of Electrical and
Electronics Engineers (IEEE) of the first commercially
practical wireless standards. Today, as the cost of wireless
technology declined and the quality increased, it became
cost-effective for users and enterprises to integrate it.

 This technology offers flexibility, mobility, cost
reduction as well as a fairly high transmission rate.
Wireless networking does, however, have security
concerns: this technology creates the possibility of
accidental or intentional intrusions into a network,
because of the nature of the physical layer of this
technology. To overcome this problem, the IEEE 802.11
committee implemented a protocol that claims to offer
comparable confidentiality to a traditional wired network,
hence its name Wired Equivalent Privacy: WEP is a
symmetric cipher that uses the same key to encrypt and
decrypt. This key is composed of two parts: the Shared
Key and a variable part called the Initialization Vector
that changes for each frame.

 As wireless networks began to grow in popularity, a
group of scientists discovered serious flaws in the
implementation of this protocol because little review was
performed on it during the IEEE approval process for
802.11 security mechanisms.

 In this paper we present a set of improvements for
Wired Equivalent Privacy networks. The rest of the paper
is organized as follows: section 2 presents the weaknesses
associated with WEP. Section 3 presents modifications to
RC4. Section 4 discusses the management of shared
keys. Section 5 presents the authentication component.
And section 6 presents the conclusion.

2. WEP WEAKNESS

 WEP has many flaws, we start by explaining the
process of WEP, and then we list its flaws.

2.1 WEP Process

 WEP is a protocol that uses a symmetric stream cipher
called Rivest Cipher 4, which is composed of the Key
Scheduling Algorithm (KSA) and the Pseudo Random
Generation Algorithm (PRGA). The original WEP uses a
64-bit key, but a later implementation uses a 128-bit WEP
key (Rappaport, T. 2002). This key is composed of two
parts: one fixed part, of length 40 or 104 bits specified by
the user and called Shared Key, and another variable part,
of 24 bits, called the Initialization Vector that changes for
every frame and is concatenated with the Shared Key to
form the entire encryption key. This implies that the same
Shared Key is used to encrypt all frames, but the IV added
to the Shared Key makes every key unique to make sure
that no two frames are encrypted using key that was used
before.

 The first algorithm of WEP is the Key Scheduling
Algorithm (Figure1). The goal of this algorithm is to
scramble the state array S, based on the key array K.

1. K[] = Key array
2. Initialization of state array:
3. for i = 0 ... N - 1
4. S[i] = i
5. j = 0
6. Scrambling:
7. for i = 0 ... N - 1
8. j = (j + S[i] + K[i mod l]) mod N
9. Swap(S[i], S[j])

Figure 1 – Key Scheduling Algorithm

 The second algorithm of WEP is the Pseudo-Random
Generation Algorithm, or PRGA (Figure2). This
algorithm uses the scrambled array S to produce
keystream as long as they are needed. Each byte of the
keystream is XORed with the plaintext of the frame to
produce the ciphertext. When the frame reaches its end,
PRGA stops generating keystream.

1. Initialization:
2. i = 0
3. j = 0
4. While need output:
5. i = (i + 1) mod N
6. j = (j + S[i]) mod N
7. Swap(S[i], S[j])
8. Output z = S[(S[i] + S[j]) mod N]
9. The byte z XORed with plaintext

Figure 2 – Pseudo-Random Generation Algorithm

 For each new frame, RC4 is restarted using a new
WEP key (Shared Key concatenated with an IV).

 The IV is sent in clear with every frame. On the
receiving station, and for decryption, it’s concatenated
with the Shared Key to produce the same WEP key that
was used in the encryption process. This key, with RC4,
would produce the same keystream, which are
concatenated with the ciphertext to reproduce the
plaintext.

2.2 Lack of Key Management

 The 802.11 standard does not specify means of
deploying Shared Keys to WLAN stations (Gast, M.
2005), other than manually configuring each one of them
with the same key. On a small network, with only a few
stations, this may not seem like a problem. However, for a
network with ten or more WLAN devices, changing a key
on each piece of equipment is a very hard task. As a
result, most Shared Keys are used for an extremely long
period of time, thus increasing the chances that an
attacker discovers the key. To make matters worse, in
most cases, these keys are never changed which results in
a very weak security scheme.

2.3 IV Collision

 WEP uses a three-byte IV for each frame transmitted
over the WLAN. When the data is sent, the IV is pre-
pended to the encrypted packet. This ensures the
receiving party has all the information it needs to decrypt
the data. However, if we take a closer look at the
statistical nature of this process, we can quickly see a
potential problem: the total size of the IV is 24 bits: if we
calculate all the possible IVs, we would have a list of 224
different possible keys. Although this might sound like a
huge number (16,777,216), but one could expect to start
seeing repeats, also known as collisions, after just about
10,000 frame transmissions.

2.4 Weak IVs

 In their paper, "Weaknesses in the Key Scheduling
Algorithm of RC4" (Fluhrer, S., Mantin, I. and Shamir, A.
2001), the authors have discovered a very important flaw
in the use of Initialization Vector in the KSA. They
indicated that the use of some IVs, called weak IVs, can
leak information about the Shared Key used. This attack
is based on the first output byte of the PRGA algorithm.
As we know, the IV in WEP has a length of 3 bytes. The
format of a weak IV is as follows:

IV byte1 IV byte2 IV byte3
B+3 255 X

 For example, the IV (3, 255, 7) is considered weak,
and has the chance of leaking information on the first byte
of the Shared Key (B=0).

2.5 Poor Authentication

 WEP’s Shared Key Authentication is based on the
Shared Key: a client should prove knowledge of it in
order to be authenticated. Shared Key Authentication uses
a challenge send by the Access Point that the station
XORs with its Shared Key to produce the challenge
response. The Access Point then compares the response
with its own calculations (Figure 3).

Figure 3 – WEP Authentication

 In the case of the Shared Key Authentication, a hacker
can sniff both the plaintext challenge and its
corresponding encrypted response. Therefore, simply by
XORing the two together, he has a copy of the keystream
produced by RC4.

3. RC4 MODIFICATION

 In its implementation in WEP, RC4 has many flaws:
we force the use of 128-bit keys only, and we hash that
key using MD5 to give another 128-bit output. This
output key is then used in RC4.

3.1 Using 128-bit WEP Keys Only

 As we saw earlier, WEP allows the use of a 40-bit or
104-bit Shared Key to be concatenated with an IV of
length 24 bits to form the entire WEP key of length 64 or
128 bits which is given as input to the RC4 algorithm. In
our use of RC4, we will only allow the use of the 128-bit
WEP Key: an IV of length 24 bits will be concatenated

with a 104-bit Shared Key only to form the entire WEP
key.

3.2 Hashing WEP Key

 As we saw before, Fluhrer, Mantin and Shamir have
discovered a serious flaw in WEP: some IVs called weak
IVs can reveal information on the Shared Key.

 Our approach is to hash the key before feeding it to
KSA: MD5 (Rivest, R., 1992) will be used to take the key
as input and produce a 128-bit hash value that will be the
new key. This way each frames will be encrypted using a
totally different key, no two frames will be encrypted
using the same Shared Key part because using a different
IV with the same Shared Key and hashing their
concatenation would give a totally different hash result:
this approach solves the problem of weak IVs because
K[3]… K[15] is different for every frame (as well as
K[0], K[1], K[2]).

 For the sending station, the hash is easily calculated: a
random IV is concatenated to the Shared Key (just like
WEP works), but instead of immediately using this key
with RC4, it is hashed to produce a new 128-bit key that
is fed to the RC4 algorithm. For the receiving station that
holds the same Shared Key, when it receives the
encrypted frames, it gets the IV used. Once the IV is
known, it is concatenated to the Shared Key and hashed;
the result is the same hash that was produced by the
sending station. This resulting hash is used as the key that
is used to decrypt the encrypted frame: it produces the
same keystream that was used to encrypt the frame

4. MANAGING SHARED KEYS

 WEP, the original 802.11 encryption protocol does not
provide any form of key management.. We present a new
Key Management scheme for WEP that is based on an
asymmetric cryptosystem.

4.1 Hybrid Cryptosystem

 Symmetric and asymmetric algorithms each have their
own advantages and disadvantages: Symmetric ciphers
are much faster than asymmetric ciphers (Schneier, B.
1996), but have the problem of key distribution.
Asymmetric algorithms have a pair of keys and do not
worry about key distribution because the private key is
never shared, but these algorithms are slow.

 A Hybrid Cryptosystem is a system that combines
some of the best features of both symmetric and
asymmetric encryption protocols: both types of protocols
are used in the same system, preserving the speed of
symmetric algorithms and the security of asymmetric
algorithms

 Our proposed solution is to use a Hybrid Cryptosystem
that keep using the RC4 symmetric encryption to encrypt
every frame, but add an asymmetric cipher to act as a Key

Exchange protocol, that will only be used to encrypt and
distribute the changing Shared Key periodically in a
secure way.

 The Access Point will use the public key of each
station to encrypt the RC4 Shared Key and send it to it
securely. The corresponding station decrypts the Shared
Key using its own private key.

4.2 RSA Cryptosystem

 The RSA algorithm (Figure 4), named after its
creators, Ron Rivest, Adi Shamir and Len Adleman
(Rivest, R., Shamir, A. and Adleman, L. 1978), was
invented in 1977 and is the most popular and widely used
asymmetric encryption system today. This algorithm is a
block cipher which provides security, authentication and
digital signature. Its security is based on the fact that
finding large prime numbers is computationally easy, but
factoring the product of two such numbers appears
computationally infeasible.

 1. Initialize P and Q (2 large primes)
 2. Calculation:
 3. N=P*Q
 4. φ(N)=(P-1)(Q-1)
 5. D co-prime to φ(N) GCD (D, φ(N)) = 1
 6. E E*D ≡ 1(mod φ(N))
 7. Public key = (E, N)
 8. Private key = (D, N)
 9. Ciphertext C = ME mod N
 10. Plaintext M = CD mod N

Figure 4 – RSA Algorithm

 In comparison with ElGamal (ElGamal, T. 1985) and
Rabin asymmetric cryptosystems, RSA was picked
because:

1. RSA is both an encryption scheme as well as a
digital signature method, unlike ElGamal that
needs a separate signature system in order to
digitally sign its messages.

2. Rabin’s decryption is way too slow compared to
the other two systems.

3. With RSA, according to the NESSIE consortium,
1024-bit RSA keys should remain "secure until
at least the year 2010" (NESSIE Consortium
2003), therefore we are going to use keys of
length 1024 bits.

4. The SafeXcel 1741 chipset that we’ll examine in
detail in the next section, supports a maximum of
1024-bit RSA key

4.3 Encryption Chipset – The SafeXcel 1741

 Our hybrid system relies on the Access Point: as we
will see, the Access Point will be involved in heavy RSA
encryption and decryption calculations. For this reason,
the much faster hardware encryption and decryption

should be used in the Access Point to match the high
speed processing power of any computer today.

 Many different RSA hardware chips exist in the
market today. One of these is the the SafeXcel produced
by SafeNet technology. The SafeXcel 1741 was chosen
because it has the following features:

1. Supports MD5 hash function with a rate of 451
Mbps as well as the symmetric cipher RC4.

2. Supports the asymmetric cipher RSA:
o 1024-bit public key encryption and

signature verification in 0..85 ms
o 1024-bit private key decryption and

signature in 8.4 ms
3. Hardware based and non-deterministic Random

Number Generator (RNG)
4. Can internally generate session keys (Shared

Keys for our system) as well as Initialization
Vectors.

5. Cost-effective: We e-mailed SafeNet and they
informed us that an Access Point equipped with
this chip would cost just about 25$ more than a
simple WEP-only Access Point.

 We assume that this RSA chip is used in the Access
Points that we are going to test throughout this work.

4.4 Key Distribution

 Once the asymmetric cipher was chosen to be RSA, it
is time to describe how our system distributes the Shared
Key to be used by stations once they are authenticated and
when that key is changed by the Access Point that is
equipped with the SafeXcel chipset.

4.4.1 Getting the Initial Shared Key

 Upon a successful authentication, as we’ll see later on,
the Access Point would have all the stations’ 1024-bit
public keys and each station would have the Access
Point’s public key. The process of getting the Shared Key
is:

0. At t=0, Alice checks the Shared Key in use and
forms a frame containing it and with destination
Bob.

1. At t=1, Alice encrypts (signs) the MD5 hash
value of the frame with privateAlice to form the
Digital sig. = privateAlice(MD5(frame))

2. At t=1, Alice encrypts the frame using the public
key of Bob = publicBob(frame)

3. At t=2, Alice sends the encrypted frame with the
signature to Bob and waits for an
Acknowledgement.

4. At t=3, Bob receives the frame and decrypts it
using privateBob

5. At t=4, Bob decrypts (verifies) the digital
signature using publicAlice and compares the
result obtained with the result of its own MD5
hash computation. If these 2 match, Bob

concludes that the frame comes from Alice and
is not altered.

6. At t=5, Bob sends the ACK to Alice.
7. Bob has the Shared Key now. It can start using it

to encrypt frames using RC4

4.4.2 Shared Key Changing

 In their paper (Stubblefield, A., Ioannidis, J. and
Rubin, A. 2001), the authors recommended "securely re-
keying each user after every approximately 10,000
packets": they showed that re-keying every 10,000
packets would prevent most attacks because the key is
changing often.

 Using a frame counter in an inactive wireless network
is not efficient, therefore the better approach is to use a
time counter: based on the results of different tests on the
usage of 10,000 frames and on the fact that we are
hashing the WEP key before using it (an additional
security layer) and that the average number of stations
associated to an Access Point is 30 (Masafumi O. 2003).
We concluded that an interval time of 5 minutes (300
seconds) for changing the Shared Key should be enough.

 Let us assume that the Access Point reached the 300-
second mark and is ready to change the Shared Key on all
its associated stations Bob, Clara and Dan. The steps are:

0. At t=0, Alice randomly generates a 104-bit
Shared Key= SharedKey

1. At t=1, Alice encrypts every frame (different
destinations) that contains the same Shared Key:
(SharedKey) by the public key of every
associated station: the number of different
encryptions is equal to the number of associated
stations.

• publicBob(frame1)
• publicClara(frame2)
• publicDan(frame3)

2. At t=2, Alice encrypts the MD5 hash value of
each one of these different frames with
Private(Alice) to form a different Digital
signature for each station.

• privateAlice(MD5(frame1))
• privateAlice(MD5(frame2))
• privateAlice(MD5(frame3))

3. At t=3, Alice sends this signed encrypted Shared
Key to every station (each encrypted with the
corresponding public key). Now every station
has 2 Shared keys: the old one in use and the
newer one.

4. At t=4, every station decrypts the frame using its
own private key:

• Bob decrypts the frame with
privateBob(frame1)

• Clara decrypts the frame with
privateClara(frame2)

• Dan decrypts the frame with
privateDan(frame3)

5. At t=5, every station decrypts the digital
signature (signature verification) and compares
the result obtained with the computed hash. If
these 2 matches, every station concludes that the
frame comes from Alice and is not altered.

6. At t=6, every station send an Acknowledge
frame indicating a successful reception of the
new Shared Key.

7. At t=7, Alice receives the ACK from every
station. If an ACK frame is missing for an
associated station, the Access Point retries a
maximum of three times until it receives the
ACK.

8. At t=8, Alice sends a frame (switchingFrame)
that switches the Shared Key on every station
and on the Access Point itself. The counter is
restarted when the first ACK frame is received
indicating a successful key switching.

9. Everyone is using the new Shared Key now

5. AUTHENTICATION

 The purpose of authentication is first to prove that a
station is really who it claims to be (entity authentication
or simply, identification) and second, to prove message
origin and integrity: makes sure that the message has not
been forged and changed in the way (message
authentication).

5.1 Message Authentication

 Our Key Management scheme uses a public key
system where two keys are generated per station and
Access Point, a public key and a private key. Using this
mechanism by itself does not protect against message
forgery: a man-in-the-middle attack can occur when a
station catches messages and send them as if it is the
legitimate source. A subtle and important variant of this
method can solve this problem: it requires an entity to
sign its messages, therefore digital signature is needed.

 Message signing works in the reverse way from
encryption (Davies, J. A. & Price, W. L. 1980). The private key
is used to create a signature and the corresponding public
key checks the signature. In most of the cases, the hash
value of a message is encrypted it with the private key.
The result is added to the end of the message. Anyone
who receives the message can decrypt the signature using
the user's public key.

5.2 Entity Authentication

 Message authentication will be used in Entity
authentication and identification which makes sure that
only authorized stations can join aparticular Access Point.

5.2.1 Authentication Process

 The administrator logs on to the Access Point and
creates a new username and his corresponding password.
The password is stored as an MD5 hash. The same

username and password should be used in the station to be
authenticated.

 To begin the authentication process:

0. At t=0, Bob probes Alice sending it publicBob.
1. At t=1 and upon receiving the public key of bob,

Alice send its own public key publicAlice to
Bob. If the Acknowledge packet of each key is
not received, the key in question is resent. From
now on all communication between these two
entities is always encrypted using each other’s
public key.

2. At t=2, a random challenge text of the same
length of the hash of the password is generated
by the Access Point. (The AP has a list of all
username/password pairs)

3. At t-3, Alice XORs the challenge with the hash
value of the password of Bob. The result is a
128-bit length string named Result1 that is kept
secret in the Access Point.

4. At t=4, Alice encrypts the frame using the public
key of Bob = publicBob(frame)

5. At t=5, Alice encrypts the MD5 hash value of the
frame with privateAlice to form the Digital
signature = privateAlice(MD5(frame))

6. At t=6, Alice sends the encrypted frame with the
signature to Bob and waits for an
Acknowledgement.

7. At t=7, Bob receives the frame and decrypts it
using privateBob

8. At t=8, Bob decrypts (verifies) the digital
signature using publicAlice and compares the
result obtained with the result of its own MD5
hash computation. If these 2 match, Bob
concludes that the frame comes from Alice and
is not altered.

9. At t=9, Bob sends the ACK
10. At t=10, bob XORs PassMD5(Bob) with the

challenge obtained. The result is a 128-bit length
string named Result2.

11. At t=11, Bob encrypts the frame using the public
key of Alice = publicAlice(frame)

12. At t=12, Bob computes the MD5 hash of the
frame and encrypts the result with PrivateBob to
form the Digital signature =
privateBob(MD5(frame))

13. At t=13, Bob sends the encrypted frame with the
signature to Alice and waits for an
Acknowledgement.

14. At t=14, Alice receives the frame and decrypts it
using privateAlice

15. At t=15, Alice decrypts (verifies) the digital
signature using publicBob and compares the
result obtained with the result of its own MD5
hash computation. If these 2 match, Alice
concludes that the frame comes from Bob and is
not altered.

16. At t=16, Alice sends the ACK

17. At t=17, Alice compares Result2 with Result1. If
they match, Alice concludes that Bob knows the
password. So Bob is authenticated by Alice.

18. At t=18, Alice send Bob an "Authentication
Success" message indicating a successful
authentication. Bob is now associated to Alice.

19. At t=19, Bob replies with an Acknowledge.

 Figure 5 shows the Authentication between a station S
and an Access Point AP. Note that messages in brackets
are encrypted

Figure 5 – Authentication process

6. CONCLUSION

 Our Hybrid Cryptosystem security specification is a
major enhancement over the original WEP. The major
component of WEP, that is, the use of the symmetric
cipher RC4 to encrypt every frame has not been changed;
however, our system adds a series of corrective tools
around it to make it more secure.

 First, the use of 128-bit WEP key is now mandatory.
Moreover, an MD5 hash function was added before the
use of any key in RC4, this hash makes sure that no two
frames are encrypted using the same Shared Key part as it
is used to be in WEP. Every frame has a totally different
symmetric key to be used for encryption and decryption.

 Second, a Key Management scheme was added to
solve the problem of static Shared Keys: even though we
are hashing before using the key in RC4, but changing the
Shared Key is still needed.

 Finally, an authentication mechanism was included: it
is based on an encrypted challenge with an encrypted
challenge reply. The challenge and its corresponding
challenge response are also digitally signed.

REFERENCES

[1] F. Bulk. “The ABCs of 802.11i Wireless LAN
Security.” Courtesy of Network Computing. 2006.

[2] W. Dai. “Crypto++ 5.2.1 Library.” Retrieved January
12, 2005 from W. Dai’s personal web site:
http://www.eskimo.com/~weidai/cryptlib.html. 2005.

[3] J. A. Davies and W. L. Price. The Application of
Digital Signatures Based on Public-Key Cryptosystems.

NPL Report DNACS 39/80. National Physics Laboratory.
Teddington, England. 1980

[4] T. ElGamal. “A Public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms.” IEEE
Transactions on Information Theory IT-31, pp. 469-472,
1985.

[5] S. Fluhrer, I. Mantin, and A. Shamir. “Weaknesses in
the Key Scheduling Algorithm of RC4.” In Eighth Annual
Workshop on Selected Areas in Cryptography. Toronto,
Canada, 2001.

[6] M. Gast. 802.11 Wireless Networks: The Definitive
Guide. O’reilly, 2005.

[7] O. Masafumi. On Operation of 802.11 Wireless
Network Services, 2003.

[8] NESSIE Consortium. Portfolio of Recommended
Cryptographic Primitives. Retrieved February 6, 2006
from Cryptnessie Web site: http://www.cryptnessie.org,
2003.

[9] G. Ou. Real Wireless LAN security, Introducing
802.1x and EAP. TechRepublic online magazine, CNET
network. Retrieved February 2, 2006 from TechRepublic
Web site: http://www.techrepublic.com, 2003.

[10] T. Rappaport. Wireless Communications Principles
and Practices, 2nd edition. Prentice Hall, 2002.

[11] R. Rivest. The MD5 Message-Digest Algorithm.
RFC 1321, MIT and RSA Data Security. Web site:
http://www.rfc-editor.org/rfc/rfc1321.txt, 1992.

[12] R. Rivest, A. Shamir, and L. Adleman. “A Method
for Obtaining Digital Signatures and Public Key
Cryptosystems.” Communications of the ACM 21, pp.
120-126, 1978.

[13] B. Schneier. Applied Cryptography 2nd edition. John
Wiley and Sons, Inc., 1996.

[14] A. Stubblefield, J. Ioannidis, and A. Rubin. Using the
Fluhrer, Mantin and Shamir Attack to Break WEP. AT&T
Labs – Research. Florham Park, NJ, 2001.

Acknowledgement: This work was funded by the
Lebanese American University.

http://www.eskimo.com/%7Eweidai/cryptlib.html
http://www.cryptnessie.org/
http://www.techrepublic.com/
http://www.rfc-editor.org/rfc/rfc1321.txt

