
A COMPARATIVE STUDY OF REPLACEMENT ALGORITHMS USED IN THE
SCALABLE ASYNCHRONOUS CACHE CONSISTENCY SCHEME

Ramzi A. Haraty and Lana Turk
Lebanese American University

P.O. Box 13-5053 Chouran
Beirut, Lebanon 1102-2801

Email: {rharaty, lana.turk}@lau.edu.lb

Abstract

 The technology of PCs has been in progress in a fast
rate for many years. Mobile computing is one of the
technologies brought into the area of computers.
Different problems have arisen from the narrow
bandwidth and limited battery power of mobile clients.
Therefore, algorithms have been proposed to provide
cache consistency in mobile databases by using cache
invalidation strategies. Scalable Asynchronous Cache
Consistency Scheme (SACCS), a highly scalable,
efficient and low complexity algorithm, is one of the
cache consistency maintenance algorithms proposed. It
counts on invalidation reports to maintain cache
consistency between server databases and mobile user
databases. Least-Recently-Used (LRU) is used as a
cache replacement algorithm in SACCS. In this work,
different cache replacement strategies are proposed to
be applied in SACCS: MRU (Most-Recently-Used),
MFU (Most-Frequently-Used), LFU (Least-Frequently-
Used), FIFO (First-In-First-Out). A simulation of
SACCS with these cache replacement algorithms is
done and produces results that will be compared to
show the variation of the performance of the system.
Statistical results will point out the advantages and
disadvantages of each algorithm concerning miss ratio,
delay, total hit, and total miss.

KEY WORDS: Cache consistency, invalidation
strategies, and mobile databases.

1. INTRODUCTION

 In the past few years, mobile computing has been
used profusely in computer technology. Many problems
arise from this computer field because the wireless
connection is expensive and the bandwidth is limited.
To save time in exchanging data between base stations
and mobile users and improve the performance of the
system, data caching is imposed on mobile users in
order to access the data recently used or most likely to
be used in the future. To maintain cache consistency
between mobile users and base stations, two approaches
have been proposed: the stateful and the stateless
approach.

 A cache consistency maintenance algorithm called
Scalable Asynchronous Cache Consistency Scheme
(SACCS), gathering both stateless and stateful
approaches, was proposed with the Least-Recently-

Used (LRU) replacement algorithm [9]. In this work,
different replacement algorithms are used instead of the
LRU in the SACCS, producing different results
concerning the system performance. A comparison is
made between the LRU and the replacement algorithms
used to show the advantages and disadvantages of each
of these algorithms in system performance.

 Mobile computing encounters numerous problems
regarding wireless connection and limited bandwidth.
Solutions have been proposed to such problems like
data caching and invalidation reports. These methods
have been used in the cache consistency maintenance
algorithm SACCS, which maintains the cache
consistency between the mobile users and the servers by
gathering the features of both the stateful and stateless
approaches. SACCS uses the cache replacement
algorithm LRU as a base replacement algorithm in the
mobile user caches.

 In this work, the LRU is replaced by different cache
replacement algorithms: LFU (Least-Frequently-Used),
MRU (Most-Recently-Used), MFU (Most-Frequently-
Used), and FIFO (First-In-First-Out). The purpose of
this thesis is to show and compare between the results
of these cache replacement algorithms used in the
SACCS (including the LRU already used). The
comparison between the different outputs of the
SACCS algorithm will be built on experimental and
statistical results to show the advantages and
disadvantages of each cache replacement algorithm in
different characteristics of the system performance, for
example the miss ratio and the delay in data access.

 The remainder of this paper is organized as follows:
section 2 is a literature review of related techniques and
approaches used in the field of mobile computing.
Section 3 describes the cache consistency maintenance
scheme – SACCS. Section 4 presents the experimental
and statistical results using different replacement
algorithms. And section 5 presents the conclusion.

2. LITERATURE REVIEW

 Computer interconnection through wireless networks
has been increasing at a high speed in mobile
environments. Data is broadcasted repetitively from the
server to the clients without the need for a client
request. Thus, the server is not informed before a
mobile transaction accesses a data object because the

mailto:rharaty,%20lana.turk%7D@lau.edu.lb

data is accessed by the clients while it is being
broadcasted. A distributed database system faces many
challenges concerning data consistency, especially with
a large number of mobile clients.

 The server may broadcast data items during update
transactions in its database. Thus, mobile clients
observe data inconsistency through their transactions.
During the past few years, different studies have been
made on preserving data consistency in mobile
distributed database systems [1][3][5][6][7][8][10].
This section concentrates on describing a number of
cache invalidation strategies proposed to solve
efficiently the problem of data inconsistency. These
strategies lead to a better system performance by
reducing bandwidth utilization and query latency,
saving power and energy for mobile clients.

2.1 Cache Invalidation Model

 The dynamic progress of mobile computing has led
to a major concern regarding data consistency. Mobile
clients want to connect to the server, send queries and
receive data at different periods of time but they are
facing different limitations, such as the limited battery
power of the clients, and the narrow bandwidth of the
network. In addition, the mobility and frequent
disconnections of the mobile clients cause the data
cached in the client side to become invalid. To solve
this problem, different cache invalidation mechanisms
have been proposed.

 The IR-based cache invalidation approach was used
to preserve cache consistency. In this approach,
invalidation reports (IRs) are periodically broadcasted
by the server to the clients. When a client receives a
request for some data, it waits for the next IR to
invalidate or validate the data in its cache accordingly.
If the data is invalid, the client sends a request to the
server for a valid copy. Otherwise, the client returns the
requested data directly.

 The latency for any client to answer a query depends
on the length of the IR interval; as the IR interval gets
longer, the answer to the query gets delayed. A solution
to that delay was to replicate the IR m times within the
IR interval [11]. The replicated IRs called updated
invalidation reports (UIRs) contain only the data items
updated after the broadcast of the last IR. In this way,
the client should wait the maximum of 1/m of the IR
interval to answer a query for any data. This proposition
reduced the query latency.

2.2 Counter-based Cache Invalidation Algorithm

 The counter-based cache invalidation approach is
designed to reduce the query latency and the congestion
on the bandwidth by following three schemes: First,
prefetching data that is likely to be used in the future by
the clients makes a better utilization of the broadcast
bandwidth. In this case, when the server broadcasts data

items, the clients download the data that is invalid in
their caches and do not have to send additional requests
to the server for valid data. Second, using a broadcast
list saves power and bandwidth. The server broadcasts
only the data that has been updated since the last IR
(invalidation report). After the server broadcasts an IR,
it broadcasts the id list of data being updated (Lbcast).
Then it broadcasts the data itself. The clients, on their
side, save the broadcast list and wait until the data
arrives to wake up and download it. Third, relying on
counters also helps in saving bandwidth and in
identifying the frequently accessed data to be
broadcasted. The broadcast list includes only the ids of
the data most frequently accessed by the clients. To
identify the data to be included in the id list, a counter is
associated with each data item. This counter is
incremented by one on every request of the data from
the server and decremented by one if the data has been
discarded by the client. The data with a counter that is
equal to 0 is not included in the IR, unlike the IR-based
approach, which includes all updated data in the IR.
Hence, this counter-based scheme saves the broadcast
bandwidth.

2.3 Cache Invalidation Strategy

 In previous years, different cache invalidation
strategies existed, such as the bit-sequence (BT), the
timestamp (TS), the dual-report (DRCI) and others, to
maintain data consistency between data items in the
server database and data items in the mobile client
caches.

 A new cache invalidation strategy is proposed to
reduce the invalidation report sizes and invalidate the
necessary data items in the mobile client caches [2]. In
this strategy, when the user sends a query to the mobile
client, the queried data will be checked for its validity;
if the data exists in the client cache and is valid, it will
be used by the user. On the other hand, if the data does
not exist in the client cache, it will be requested from
the server. If the client is disconnected for a period of
time and reconnected again, the data in its cache will be
in an uncertain state. In this case, if data is requested by
a user and exists in the client cache, the client should
check for the validity of all the data in its cache by
sending the server the value of the time when the last
invalidation report was received by the client (Tlb) and
the requested data. Then, the server broadcasts to the
client the invalidation report containing only the ids of
the updated data since Tlb (including the last updated
timestamp T) and the requested data. Thus, the client
answers the user’s request and replaces its Tlb by T if
Tlb is less than T. In addition, the other mobile clients,
receiving the IR, will update their Tlb if its value is less
than T.

 As a result, the IRs broadcasted by the server will be
smaller in size consisting only of the ids of the
invalidated data since the Tlb and the data in the mobile
client caches would not be invalidated unnecessarily.

Thus, this proposed cache invalidation strategy leads to
better bandwidth utilization and less cache requests to
the server.

2.4 Cache Consistency Strategy in a Disconnected
Distributed Environment

 As mentioned earlier, the mobile computing
environment is prone to frequent disconnections of
mobile clients or mobile hosts (MHs) from the server
caused by low battery power. These disconnections
make the cache consistency in the mobile hosts difficult
to maintain. Several cache consistency schemes were
proposed to solve this problem. Most of these schemes
use the invalidation report approach (call-back
mechanism).

 An asynchronous invalidation reports scheme is
proposed where invalidation reports are broadcasted
only when data items are updated unlike periodic
invalidation reports scheme where the server broadcasts
invalidation reports periodically [4]. In the proposed
caching scheme, an additional memory, called the
Home Location Cache (HLC), is used for each mobile
host in order to maintain each data item cached by the
MH and the time-stamp of each data item last updated.
The HLC of each mobile host is found at a Mobile
Switching Station (MSS).

 When a MH receives a query, it checks for the data
in its cache; if the data is valid, then the MH answers
the query immediately by using its local cache.
Otherwise, the MH sends a request for the data to the
MSS, which in its turn sends a request to the server for
the data. When the MSS receives the data, it saves an
entry of each data item in the HLC and forwards the
data to the MH.

 Each MH preserves a time-stamp for its cache,
called the cache time-stamp, which is the time of the
last invalidation report received by the MH. The cache
time-stamp is used to decide which invalidation reports
to discard or to resend to the MH just reconnected. The
invalidation reports with a time-stamp less than the
cache time-stamp of the MH are discarded and the ones
with a time-stamp greater than the cache time-stamp in
the HLC are resent to the MH. In fact, when a MH
reconnects to the server after a disconnection for a
period of time, it sends a probe message containing the
cache time-stamp. The HLC responses to the MH
message by sending an invalidation report. Thus, the
MH can recognize which data was updated during its
disconnection by using the cache time-stamp. This
scheme handles frequent disconnections of the MHs by
maintaining the consistency of their caches with the
cost of extra memory used for HLCs.

3. THE SCALABLE ASYNCHROUNOUS CACHE
CONSISTENCY SCHEME

 For mobile computing environment, there are two
types of cache consistency maintenance algorithms:
stateless and stateful. In the stateless approach, the
server is not informed about the client’s cache content
so it periodically broadcasts a data invalidation report
(IR) to all mobile users (MUs). In such algorithms,
mobile support station (MSS) does not maintain any
state information about its mobile user caches (MUCs),
thus allowing simple database management for the
server cache (SC) but poor scalability and ability to
support user disconnectedness and mobility. On the
other hand, the stateful approach is used with large
database systems at the cost of complex server database
management. The communication in these approaches
is reliable between MUs and the mobile support station
(MSS) for IR broadcast, which means an MU has to
send back an acknowledgement for each IR received
from the server broadcast. Thus, if a mobile user is
disconnected, it does not receive any IR broadcast and
the server, which does not get any acknowledgement,
has to resend the IR again.

 SACCS combines the positive features of both
stateless and stateful approaches [9]. Under unreliable
communication environments, SACCS provides small
stale cache hit probability; A stale cache hit for a data
entry occurs at a connected MU when the MU misses
the IR of the data entry and when the update time for
the data entry is during its TTL (time-to-live period).

 SACCS was proposed to maintain the mobile user
cache (MUC) consistency for systems with read-only
transactions. Maintaining minimum state information,
SACCS has the positive features of both the stateless
and stateful approaches. The advantage of SACCS over
the asynchronous stateful algorithm, where the mobile
support station (MSS) has to identify all data objects for
every MUC, is that the MSS needs to recognize only
the valid state of MUC data objects in SACCS. On the
other hand, the advantage of SACCS over the stateless
approach is that in SACCS, the server does not need to
periodically broadcast IRs to all MUs, thus reducing the
number of IR messages sent through the network. In
addition, the broadcast channel efficiency progresses in
SACCS, which has uncertain and ID-only states in
MUC in order to handle sleep-wakeup patterns (or
disconnection-reconnection patterns) and mobility of all
MUs.

 SACCS consists of four key features which make it a
highly efficient, scalable and low complexity algorithm.
Flag bits are used at SC and MUC, an ID is used for
every data entry in MUC after its invalidation. All valid
data entries in MUC become in an uncertain state when
an MU reconnects (or wakes up), and each cached data
entry has a TTL (time-to-live).

 When an MU retrieves a data object from the MSS,
the flag bit in SC is set so the MSS has to broadcast the
IR to all MUs. On the other hand, if the flag bit is not
set, the MSS does not have to send an IR to the MUs. In

this case, bandwidth utilization is reduced by avoiding
unnecessary IRs. When a data entry in an MUC
becomes invalid, it is removed and only its ID is kept
(set to ID-only state), making the management of sleep-
wakeup pattern simple. When an MU wakes up, all
valid data items in its cache are set to uncertain state.
TTL is estimated by an MSS for each data item
depending on its update history. If the last update time
of a data item added to its TLL equals to the current
time, the data item is set to an uncertain state. This
process helps in preventing a stale data object from
being accessed in an MUC for a long time due to an
incorrect IR arrival to the MU (IR loss).

 The LRU (Least Recently Used) based replacement
algorithm was used with the SACCS for the
management of MUC. With the LRU algorithm used, a
data object is moved to the head of the cache list when
it is hit or newly cached.

4. EXPERIMENTAL RESULTS

 The simulation of SACCS is running under fixed
parameters and conditions such as fixed number of
documents exchanged and mobile users, fixed mobile
cache sizes, specified periods of time, etc for each of
LRU, which is the based cache replacement algorithm
for SACCS mobile user cache management, and the
proposed cache replacement algorithms: LFU, MRU,
MFU, and FIFO. Using these cache replacement
algorithms with SACCS affects the system performance
with different factors such as the simulation results of
the cache miss ratio, the total miss, the total hit in
MUCs and the delay of data during certain periods of
time. A comparison between the cache replacement
algorithms results on SACCS is done to show the
advantages and disadvantages of every cache
replacement algorithm used. The statistical results
obtained are based on eight simulation time units with
an interval of 50000 microsecond of simulation time.

4.1 Cache Miss Ratio

 The cache miss ratio is the ratio of the number of
unfound data items in the cache over the number of all
requested data. The cache miss ratio simulation results
are presented in figure 1, where the statistical results of
each cache replacement algorithm miss ratio versus
specific periods of simulation time are shown.

 Among all the cache replacement algorithms, it is
shown that the FIFO has the lowest miss ratio with the
average of 0.69053, while the MFU has the highest
miss ratio with average of 0.750494. With the SACCS,
the first in first out replacement strategy ensures the
highest cache hit ratio (i.e. the lowest cache miss ratio)
among the other strategies so it handles the mobile
users’ queries for data faster than the other strategies.
Thus, using the FIFO with SACCS improves the
performance of the system because it has a lower miss

ratio result than the based LRU with a miss ratio
average of 0.696047.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Time

M
is

s
R

at
io LRU

LFU
MRU
MFU
FIFO

Figure 1 Miss ratio versus simulation time

4.2 Total Delay

 The total delay is defined as the period of time
between the time the request is issued and the time the
result is received by the mobile user application. The
total delay simulation results are presented in figure 2,
where the statistical results of each cache replacement
algorithm total delay time versus specific periods of
simulation time are shown.

 Among all the cache replacement algorithms, it is
shown that the FIFO has the lowest total delay with the
total average of 14893.7, while the MFU has the highest
total delay with the total average of 21953. When used
with the SACCS, the first in first out replacement
strategy ensures the lowest period of delay time
between a request and its answer among the other
strategies because of different factors. The miss ratio is
one of the factors that affects the delay time. When a
requested data is invalid or not found in the mobile user
cache, it is time-consuming for the MU to get the data
from the server. And in this case, the FIFO is previously
shown to have the lowest miss ratio among other
replacement algorithms, which makes the total delay
lower. Thus, using the FIFO with SACCS improves the
performance of the system because it has a lower total
delay result than the based LRU with a total delay
average of 15590.5.

4.3 Total Hit

 The total hit is defined as the number of data items
hit or accessed in the mobile user cache. The total hit
simulation results are presented in figure 3, where the
statistical results of each cache replacement algorithm
total hit versus specific periods of simulation time are
shown.

0

2000

4000

6000

8000

10000

12000

14000

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Time

To
ta

l D
el

ay

LRU
LFU
MRU
MFU
FIFO

Figure 2 Total delay versus simulation time

 Among all the cache replacement algorithms, it is
shown that the FIFO has the highest total hit with the
total average of 5184, while the MFU has the lowest
total hit with the total average of 4166. The total hit
affects the system performance because it affects the
delay time of a user request for data and the network
traffic. In fact, as the number of data hit gets higher,
users’ queries are answered more quickly because
fetching the data from the user cache is much faster
than getting it from the server database. And the
network traffic is reduced because the number of users’
requests for data from the server database is lower as
the data hit in the users’ caches is higher. Consequently,
using the FIFO with SACCS improves the performance
of the system because it has a higher total hit result than
the based LRU with a total hit average of 5091.

0

500

1000

1500

2000

2500

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Time

To
ta

l H
it

LRU
LFU
MRU
MFU
FIFO

Figure 3 Total hit versus simulation time

4.4 Total Miss

 The total miss is defined as the number of data items
invalid or missed in the mobile user cache. The total
miss simulation results are presented in figure 4, where
the statistical results of each cache replacement
algorithm total miss versus specific periods of
simulation time are shown.

 Among all the cache replacement algorithms, it is
shown that the FIFO has the lowest total miss with the
total average of 11565, while the MFU has the highest
total miss with the total average of 12522. Because the
total miss factor is inversely proportional to the total hit

factor, the performance of the system is reduced as the
total miss gets higher. In fact, when a requested data is
missed in the user cache, a delay exists for the data
should be brought from the server database through the
network to the user. A data miss costs the system a
delay time and additional network use. Consequently,
using the FIFO with SACCS improves the performance
of the system because it has a lower total miss result
than the based LRU with a total miss average of 11656.

4000

4200

4400

4600

4800

5000

5200

5400

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Time

To
ta

l M
is

s

LRU
LFU
MRU
MFU
FIFO

Figure 4 Total miss versus simulation time

4.5 Performance Evaluation

 As already shown in the previous charts of cache
miss ratio, total delay, total hit, and total miss, the FIFO
has the best results among the cache replacement
algorithms: LRU, LFU, MRU, and MFU. The FIFO has
the lowest miss ratio, the lowest total delay, the highest
total hit, and the lowest total miss among all proposed
replacement algorithms. All these factors affect the
system performance of SACCS by affecting the speed
of handling the users’ requests for data and the network
traffic. Thus, the system performance of SACCS with
the based cache replacement algorithm LRU can be
improved by using the FIFO for MUC management
instead of the LRU.

5. CONCLUSION

 Mobile computing is one of the most important
technologies in the computer field. Data caching is
imposed when data is exchanged between the mobile
users and the server in order to improve the
performance of the system. Maintaining cache
consistency is one of the major problems arising in
mobile computing. A cache consistency maintenance
algorithm called Scalable Asynchronous Cache
Consistency Scheme (SACCS), gathering both stateless
and stateful approaches, was proposed with the Least-
Recently-Used (LRU) replacement algorithm to manage
mobile user caches. A detailed description for the
SACCS is done.

 In this work, different cache replacement algorithms
are proposed to be used with SACCS and compared
with the LRU already used. The impact of the proposed
cache replacement algorithms LFU, MRU, MFU, and

FIFO on the system performance is studied. A
simulation of SACCS with each of these algorithms is
done, producing results evaluating the system
performance. The simulation results, such as the miss
ratio, total delay, total hit, and total miss are compared
showing the variation of the performance of the system.
Statistical results point out the advantages and
disadvantages of each proposed cache replacement
algorithm compared to the based LRU.

 As a result, the FIFO used with SACCS is shown to
be the cache replacement algorithm with the best
simulation results compared to all the cache
replacement algorithms used. The FIFO has the lowest
miss ratio, the lowest total delay time, the highest total
hit, and the lowest total miss. In this case, the system
performance of SACCS is improved when the FIFO is
used instead of the based LRU for MUC management.

REFERENCES

[1] G. Cao. “Adaptive Power-Aware Cache
Management for Mobile Computing Systems.” IEEE
Transactions on Computers, Vol. 51, No. 6, pp. 608 –
621, 2002.

[2] P. Chuang and C. Hsu. “An Efficient Cache
Invalidation Strategy in Mobile Environments.”
Proceedings of the 18th International Conference on
Advanced Information Networking and Applications,
Vol.2, pp. 260- 263, 2004.

[3] W. Hou, C. Wang, and M. Su. “Composing Optimal
Invalidation Reports for Mobile Databases.” Journal of
Digital Information Management, Vol. 3, No.2, pp.
126-132, 2005.

[4] A. Kahol, S. Khunara, S. Gupta, and P. Srimani. “A
Strategy to Manage Cache Consistency in a
Disconnected Distributed Environment.” IEEE
Transactions on Parallel and Distributed Systems, Vol.
12, No. 7, pp. 686 – 700, July 2001.

[5] K. Y. Lam, E. Chan, and M. Au. “Broadcast of
Consistent Data to Read-Only Transactions from
Mobile Clients.” Proceedings of the Second IEEE
Workshop on Mobile Computing Systems and
Applications, New Orleans, Louisiana, USA, 1999.

[6] S. Mazumdar and P. Chrysanthis. “Achieving
Consistency in Mobile Databases through Localization
in PRO-MOTION.” Proceedings of the 10th

International Workshop on Database & Expert Systems
Applications, Washington, DC, USA, 1999.

[7] E. Pitoura. “Supporting Read-Only Transactions in
Wireless Broadcasting.” Proceedings of the DEXA’98
Workshop on Mobility in Databases and Distributed
Systems, 1998.

[8] A. Seetha and A. Kannan. “Maintaining Data
Consistency in Mobile Database Broadcasts.”
Proceedings of MAP India, 2002.

[9] Z. Wang, S. Das, H. Che, M. and Kumar. “Scalable
Asynchronous Cache Consistency Scheme (SACCS)
for Mobile Environments.” IEEE Transactions on
Parallel and Distributed Systems, Vol. 15, No. 11, pp.
983 – 995, 2004.

[10] K. L. Wu, P. Yu, and M. Chen. “Energy-Efficient
Caching for Wireless Mobile Computing.” Proceedings
of the Twelfth International Conference on Data
Engineering, Washington, DC, USA, 1996.

[11] L. Yin, G. Cao, and Y. Cai. “A Generalized
Target-Driven Cache Replacement Policy for Mobile
Environments.” Journal of Parallel and Distributed
Computing, Vol. 65, No. 5, pp. 583 – 594, 2006.

Ramzi A. Haraty is an associate professor and the
assistant dean of the School of Arts and Sciences at the
Lebanese American University in Beirut, Lebanon. He
is also the Chief Financial Officer of the Arab
Computer Society. He received his B.S. and M.S.
degrees in Computer Science from Minnesota State
University - Mankato, Minnesota, and his Ph.D. in
Computer Science from North Dakota State University
- Fargo, North Dakota. His research interests include
database management systems, artificial intelligence,
and multilevel secure systems engineering. He has well
over 100 journal and conference paper publications. He
is a member of Association of Computing Machinery,
Arab Computer Society and International Society for
Computers and Their Applications.

Lana Turk received her B.S. degree in Computer
Science from Haigazian University – Beirut, Lebanon,
and her M.S. degree in Computer Science from the
Lebanese American University – Beirut, Lebanon. Her
research interests include mobile networking and cache
management.

Acknowledgement: This work was funded by the
Lebanese American University.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9028

