

SDDSR: SEQUENCE DRIVEN DYNAMIC SOURCE ROUTING FOR AD HOC

NETWORKS

RAMZI A. HARATY AND WAEL KDOUH

LEBANESE AMERICAN UNIVERSITY

DIVISION OF MATHEMATICS AND COMPUTER SCIENCE

BEIRUT, LEBANON

EMAIL: {rharaty, wael.kdouh}@lau.edu.lb

ABSTRACT
Mobile ad-hoc networks are becoming more popular as the use of mobile computers is increasing.

The biggest challenge facing such networks is continuous and random change in the topology.

Table driven routing protocols where not designed for such networks. For this reason new routing

protocols that can handle continuous change of topology where created. Two popular protocols

are Dynamic Source Routing (DSR), and Ad-hoc On-demand Distance Vector (AODV). DSR has

the advantage of making heavy use of routing information to reduce the routing load, where as

AODV has the advantage of using sequence numbers, which guarantees that at all time we are

using non-stale routing entries. In this paper, we present the implementation of Sequence Driven

Dynamic Source Routing (SDDSR). SDDSR is an on-demand routing protocol, which builds

upon DSR and AODV. We use the NS-2 simulator to show the experimental results of the new

protocol. The results showed better packet delivery as well as less routing load.

KEYWORDS: Ad-hoc On-demand Distance Vector, Dynamic Source Routing, Mobile

Networks, and Sequence Driven Dynamic Source Routing.

1. INTRODUCTION

 Wireless networks have been gaining popularity in recent years for many reasons. Perhaps the

most important of which is the innovative approach concerning the design of the wireless

processors. Nowadays, we can see them integrated within compact electronic equipments like

Pocket PCs. Another reason is the availability of those chips at cheap prices. An example is

Intel’s CMOS system, which is currently being manufactured and supports 802.11a, b and g, as

well as the next generation 802.11n wireless networks, and hence this is an indication that

wireless networks will keep on gaining even more popularity in the near future. Another

promising technology is Intel’s WIMAX, a technology which will boost the popular VOIP. This

popularity of wireless technology yields to that of wireless mobile ad-hoc networks.

 A mobile ad-hoc network is a peer-to-peer wireless network where there is no centralized

access point which regulates the flow of data between hosts; rather each host participating in the

network will act as a router. In such networks, hosts usually move randomly from each other’s

range. Knowing this we can deduce that a lot of processing will have to be handled by each host.

It is also obvious that there is no static graph of the overall network; rather this graph is being

updated continuously. As a result, an appropriate routing protocol is needed due to the limited

resources of such hosts as well as the random nature of such networks which may end up

increasing routing load.

 Traditional table-driven routing protocols such as RIP, DSDV, CGSR, and WRP lack the

capability to cope with the random change of topologies in mobile ad-hoc networks [7]. The

aforementioned problem results from the fact that such protocols waste limited resources to

discover routes that may never be needed. On the other hand, on-demand routing protocols have

been introduced as solution of this problem [9]. Such protocols only attempt to initiate route

discovery only when there is a request of communication between two hosts. Thus, less

processing will be handled by each host since less route discoveries will be initiated.

 There are many existing on-demand routing protocols such as AODV, DSR, TORA, ABR,

SSR, and WRP [10]. The best existing on-demand routing protocols are DSR and AODV. DSR

uses source routing and new routes are discovered only when needed. In other words, route

discovery is only initiated when route request occurs, or route break down takes place. Although

DSR surpasses table driven protocols, when high mobility occurs routing load tends to increase

due to frequent link failures.

 AODV, on the other hand, discovers routes in a similar procedure but without the use of

source routing. AODV maintains tables instead of caching routes. A feature introduced in AODV

is the use of sequence numbers to represent the freshness of routing information. Thus, AODV

succeeds in delivering more packets and at the same time reduces the routing load. But AODV

has its own problem, which is the number of route discovery request since it does not make full

use of routing information. As a result the overall overhead increases.

 Looking at the two protocols we can see that the advantage of DSR is the heavy use of routing

information stored in each node’s cache. Where as the advantage of AODV lies in the fact that it

uses sequence numbers to avoid stale information and thus increase delivery ratio.

 The new proposed protocol, Sequence Driven Dynamic Source Routing, uses the advantages

of the two protocols. In other words it uses source routing combined with sequence numbers to

enhance the overall performance.

 The rest of the paper is organized as follows. Section 2 defines the specifications and goals of

the new protocol. Section 3 addresses the design and implementation of SDDSR. Section 4

reports the experimental results. And section 5 presents the conclusion.

2. SPECIFICATIONS AND GOALS

 Like all on-demand routing protocols, Sequence Driven Dynamic Source Routing consists of

three phases: (a) route discovery, (b) route setup, (c) route maintenance. SDDSR aims at to

improve packet delivery ratio, as well as reducing routing load. Packet delivery ratio can be

improved by the use of sequence numbers, which guarantees at all times the use of fresh routes.

As for the routing load, it is solved through two stages. The first stage is the heavy use of

information stored in each node’s cache, which results in less route requests. Where as the second

stage ensures that the amount of information carried during route discovery is always minimized.

2.1 SDDSR Phases

 Like any on-demand routing protocol SDDSR includes three phases:

2.1.1 Route Discovery

 Route discovery allows any host in the ad-hoc network to dynamically discover a route to any

other host in the ad hoc network, whether directly reachable within wireless transmission range or

reachable through one or more intermediate network hops through other hosts. A host initiating a

route discovery broadcasts a route request packet, which may be received by those hosts within

wireless transmission range of it. The route request packet identifies the host for which the route

is requested. If the route discovery is successful, the initiating host receives a route reply packet

listing a sequence of hops through which the target is reachable. The route request propagates

through the network until it reaches the destination or an intermediate node possessing a route to

the destination. This node is responsible for sending the route reply.

2.1.2 Route Setup

 This phase is also known as route reply, it involves sending back a reply to the source of the

request. This reply will eventually inform the source about the route to destination. The replying

host could be the destination itself or any intermediate host depending on the validity of the entry.

2.1.3 Route Maintenance

 This phase is responsible for identifying any broken links in the network that may be caused

by a host going out of transmission range, or by a sudden halt of a host. Post to failure

identification, a route request is initiated triggering the whole three phases to take place again.

2.2 SDDSR Performance Analysis

 The new protocol is evaluated based on two key metrics:

(i) Packet Delivery Ratio - the ratio of the packets delivered to the destination

 to those generated by the CBR (Constant Bit Rate) sources.

(ii) Routing Load - the number of routing packets “transmitted” per data

 packet “delivered” at the destination.

 Other important parameters to evaluate the protocol performance are shown in Table 1.

Performance

parameters
AODV DSR SDDSR

Time complexity

(initialization)
O(2d) O(2d) O(2d)

Time complexity

(postfailure)
O(2d) O(2d) O(2d)

Communication

complexity (postfailure)
O(2n) O(2n) O(2n)

Loop-free Yes Yes Yes

Routes maintained in Route table Route cache Route cache

Route reconfiguration

methodology

Erase route;

notify source

Erase route;

notify source

Erase route;

notify source

Routing metric
Freshest and

shortest path
Shortest path

Freshest and

shortest path

Table 1. Performance parameters of three on-demand routing protocols.

*d = Diameter of the network

*n = Number of nodes

 Since SDDSR is based on both DSR and AODV, it is expected to show similar results as those

shown in table 1.

3. SDDSR

 Destination Sequenced Dynamic Source Routing is an on-demand routing protocol. Like most

of the protocols of its category, it consists of three phases:

i) Route discovery,

ii) Route set-up, and

iii) Route maintenance.

3.1 The Algorithm

 Every host i has a request number (rni), a sequence number (sni), and two tables for storing the

last known request number for each host j (rni[j]) and the last known sequence number for each

destination (sni[j]). The request number rni along with address will be used by the receiving

nodes to identify the request of node i. As for the sequence number sni, it will be used to make

sure that only fresh routes to node i, are going to be used, and hence improve the delivery ratio.

 SDDSR uses caching in stead of routing tables, since it is going to utilize source routing in the

route setup. To overcome the problems of DSR [10, 12, 17, 25], where the addresses of all nodes

had to be carried during both, the route discovery as well as the route reply, SDDSR does not use

source routing in discovering a route to the destination. Instead it uses the same mechanism as

AODV, where every node along the path will point to the previous node from which it received

the request. This helps in reducing the routing load. So by the time the request will reach the

destination, or any other node acquiring a valid route to the destination, it will know the way back

to the source. After the route to the destination is discovered, a reply containing the addresses of

all nodes (source routing) has to be built during the route reply. As the reply propagates back

towards the source of the request, each node will add its address as well as its latest sequence

number. The addresses will eventually be used to build the source route where as the sequence

numbers will be used to update the tables of all nodes on the way back to make that all time they

contain the latest sequence numbers of all the nodes along the active path. The use of sequence

numbers also ensures that the network is loop free. However, the use of cached routes imposes

some changes on the way sequence numbers are used. The use of cached routes is important to

make use of all routing information gathered in the route discovery phase, which will lead us to

solve the problem of AODV, since AODV uses sequence numbers without exploiting all routing

information.

3.1.1 Route Discovery

 Since SDDSR is an on-demand protocol, it implies that a host initiates a route discovery only

when it needs a route to the destination. Suppose there is a host s that needs to send a data packet

to a destination host d. First, host s checks whether it has a route to the destination, and in case it

does not, it will increase its counter rns, before initiating a route request which has the following

structure: <s, pn, rns, snmaxd, d> where pn denotes the address of the host from which the packet

was received (originally pn=s), rns the request number of the source host, and snmaxd the

maximum sequence number recorded during the packet’s travel (initially snmaxd= sns[d], where

sns[d] is the sequence number of host d known at host s). Each host i that receives the RREQ,

checks the numbers < s, rns >. If rns < rni[s] then the RREQ is discarded, otherwise rni[s] gets

updated, and host i performs a series of actions: i) if number sni[d] > snmaxd, then the packet is

updated with the value sni[d], ii) adds in its cache a route entry that contains the data < pn, s, rns

>, which will be used later as a reverse route to reach the host from which the packet was

received.

 This route entry is used in setting up the discovered route, iii) the packet is finally broadcasted.

After a period of time, the RREQ packet will reach either the destination or an intermediate node

possessing a “valid” route to the destination. In either case, if the receiving host has not processed

the RREQ before, it increases its sequence number and starts the route setup phase.

3.1.2 Route setup

 After the RREQ packet reaches the destination or an intermediate node possessing a “valid”

route to the destination, the route setup is started by that node. It involves replying to the

requesting node by sending back the discovered route. Let us consider the address of the replying

host is r, and <xr,j,d> the vector containing the addresses of the hosts consisting the j-th route to d

existing in the route cache of host r, and <snr,j,d> the vector of the corresponding sequence

numbers. The reply packet includes the following vectors:

<xr,j,d> = <r,i1, i2,…, ik-1,d> (1)

<snr,j, > = <snr, snrj [i1],…, snrj [ik-1], snrj [d]> (2)

snrj [i] is the sequence number of host i at the time j route was formed. It is clear that in the case

that r=d the aforementioned vectors are simplified to [d] and [snd].

 Host pn will receive a reply packet from r that contains the following

information<s,rns,xr,j,d,snr,j,d>. After receiving the RREP packet, pn caches the new route and

updates the numbers snpn[i], for any i belonging to <xr,j,d >. In addition it updates its sequence

number snpn, before adding it along with its address to the RREP packet. Finally, using the

numbers <s, rns >, it recalls the next hop to host s in order to transmit the packet. The reverse path

pointing towards the source node s is deleted after a period of texp seconds. This is done to allow

multiple replies to reach the originator of the request.

 A favorable feature of SDDSR is the control of cache reply. Contrary to DSR not all of hosts

having a route to a destination can reply to a request for this destination. If, for example, a host r

receives a packet originated from host s, requesting a route to host d, even if host r has a route in

its cache to the destination, it can not use it before making sure that this route is valid. A route is

only considered valid when:

snr[d] > snmaxd (3)

where snmaxd is the sequence number recorder in the packet header. In this way not only more up

to data routes are used but it also the formation of loops is excluded.

3.1.3 Route Maintenance and Packet Forwarding

 SDDSR uses source routing in forwarding data packets. As for broken links it identifies them

in the same way as DSR. That is, if a host tries to send a packet for several times and does not get

any reply, it will send RERR to the source of the request. When the host receives the RERR, it

will remove all the routes containing the hosts forming the broken link, and a new route discovery

process will be initiated by the source, if the route is still in need.

4. EXPERIMENTAL RESULTS

4.1 The Simulator

 SDDSR was evaluated under NS 2 (Network Simulator version 2). NS is built to run under

UNIX, so we used CYGWIN, which emulates UNIX platform under windows in order to compile

it [4]. NS is written in C++ and OTcl (Tcl script language with Object-oriented extensions) [6].

NS is an event-driven network simulator that simulates variety of IP networks. It implements

network protocols such as TCP and UPD, traffic source behavior such as FTP, Telnet, Web and

CBR, router queue management mechanism such as Drop Tail and RED, routing algorithms such

as Dijkstra.

 NS is an object-oriented Tcl (OTcl) script interpreter that has a simulation event scheduler and

network component object libraries, and network setup (plumbing) module libraries (actually,

plumbing modules are implemented as member functions of the base simulator object).

 To setup and run a simulation network, an OTcl scripts must be written to initiate an event

scheduler, setup the network topology using the network objects and the plumbing functions in

the library, and tell the traffic sources when to start and stop transmitting packets through the

event scheduler.

 The term "plumbing" is used for a network setup, because setting up a network is plumbing

possible data paths among network objects by setting the "neighbor" pointer of an object to the

address of an appropriate object. The power of NS comes from this plumbing.

 MobileNode is the basic node object with added functionalities like movement, ability to

transmit and receive on a channel that allows it to be used to create mobile, wireless simulation

environments. The class MobileNode is derived from the base class Node. The mobility features

including node movement, periodic position updates, maintaining topology boundary, etc. are

implemented in C++ while plumbing of network components within MobileNode itself (like

classifiers, dmux, LL, Mac, Channel, etc.) have been implemented in Otcl.

4.2 Simulation Results

 In order to asses the performance of SDDSR, we created the code under C++ as well as OTcl.

The simulated scenario consisted of ten nodes moving randomly within a boundary of

500x500m
2
. The simulation runs for 400 seconds. We used the Random Waypoint Mobility to

control the node movement as well as transmission range [2, 22].

 After running the simulation, the results showed that SDDSR outperforms DSR in terms of

both, routing load as well as packet delivery ratio.

 Figure 1 shows that the packet delivery ratio of SDDSR is much higher than that of the DSR

protocol [Note: we did not compare SDDSR with AODV since studies have shown that DSR

outperforms AODV [5]. The reason for the high packet delivery ratio for SDDSR is that it never

uses stale routes. If it does not have a route for a destination it finds one through “Route

Discovery” and it also uses “Route Maintenance” to ensure that only valid routes are stored at the

nodes. The graph represents the result of 10 nodes moving at different speeds. As shown in the

graph, the more mobility we tend to have in the network, the better SDDSR tend to perform. We

can see that at the speed of 20 m/sec SDDSR performs 87% delivery ratio where as DSR

performs 78%.

0

0.2

0.4

0.6

0.8

1

1.2

20 15 10 5 0

Speed(m/sec)

P
e
rc

e
n

ta
g

e
 o

f
p

a
c
k
e
t

d
e
li
v
e
ry

 r
a
ti

o

DSR

SDDSR

Figure 1. Delivery ratio for different speeds.

 Figure 2 shows that the performance of SDDSR is again better. The better results under

SDDSR are due to the use of fresh routing information. The routing overhead is the highest for

low pause times. As the movement of the nodes becomes less frequent the routes persist for larger

durations of time and hence the number of “Route Discovery” packets decreases. This explains

the decrease in the routing overhead as the pause time increases.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20 15 10 5 0

Speed(m/sec)

R
o

u
ti

n
g

 l
o

a
d

SDDSR

DSR

Figure 2. Routing load for different speeds.

5. CONCLUSION AND FURTHER WORK

 In this work we developed a new routing protocol – SDDSR - for mobile

ad-hoc networks. The new protocol uses source routing, caching, and sequence numbers, to

decrease routing load and improve delivery ratio. The results showed that SDDSR outperforms

DSR in terms of both delivery ratio and routing load. Moreover, SDDSR does not use source

routing during route discovery in order to avoid the waste of useful network resources, a problem

which existed in DSR and caused the increase the routing load.

 We plan to continue with our simulations for DSR and SDDSR. We would like to study the

effects of changing other parameters (e.g., the number of mobile nodes, the dimensions of

simulation space and the speed of movement of the nodes) and collect other metrics, if possible.

We can also repeat each test with a large number of scenarios to remove the randomness, if any,

from the results.

6. REFERENCES

[1] C. Bettstetter, “Topology Properties of Ad-Hoc Networks with Random Waypoint Mobility,”

ACM SIGMOBILE Mobile Computing and Communications Review, Vol. 7, Issue 3, pages 50-

52, July 2003.

[2] J. Broch, D. Johnson, and D. Maltz, “The Dynamic Source Routing Protocol for Mobile Ad-hoc

Networks,” http://www.ietf.org/internet-drafts/ draft-ietf-manet-dsrOl.txt, Dec 1998. IETF Internet

Draft.

[3] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc Network

Research,” Wireless Communication & Mobile Computing (WCMC): Special Issue on Mobile Ad

Hoc Networking: Research, Trends and Applications, Vol.2, No.5, pp.483-502, 2002.

[4] J. Chung and M. Claypool, “NS by Example”. Available at http://www.wpi.edu. 2005.

[5] S. R. Das, R. Castaneda, J. Yan, and R. Sengupta, “Comparative Performance Evaluation of

Routing Protocols for Mobile, Ad-Hoc Networks,” Seventh International Comference on

Computer Communications and Networks, pp. 153-161. October, 1998.

[6] K. Fall and K. Varadhan . “NS Notes and Documentation,” 1999. Available from http://www-

mash.cs.berkeley.edu/ns/.

[7] D. Johnson and I. Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks,” On Computer Communications Review - Proceedings of SIGCOMM ’96, Aug.1996.

[8] D. Johnson and D. Maltz, “Dynamic Source Routing in Ad hoc Wireless Networks.,” In T.

Imielinski and H. Korth, editors, Mobile computing, chapter 5. Kluwer Academic, 1996.

[9] D. Maltz, J. Broch, J. Jetcheva, and D. Johnson, “The Effects of On-demand Behavior in Routing

Protocols for Multihop Wireless Ad hoc Networks,” IEEE Journal on Selected Areas in

Communication, 1999.

[10] S. Murthy and 1. J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for Wireless Networks,”

ACM Mobile Networks and App. J., Special Issue on Routing in Mobile Communication

Networks, Oct. 1996, pp. 183-97.

[11] Y. Zhong and D. Yuan, “Dynamic Source Routing Protocol for Wireless Ad Hoc Networks in

Special Scenario using Location Information,” Communication Technology Proceedings, ICCT,

International Conference, Vol.2, pages 1287-1290, April 2003.

