

A COMPARATIVE STUDY OF ELGAMAL BASED DIGITAL SIGNATURE

ALGORITHMS

RAMZI A. HARATY, Lebanese American University, Lebanon, rharaty@lau.edu.lb

A. N. EL-KASSAR, Beirut Arab University, Lebanon, ak1@bau.edu.lb

BILAL M. SHEBARO, Lebanese American University, Lebanon, bs990645@lau.edu.lb

ABSTRACT
A powerful and practical public-key and digital signature scheme was produced by ElGamal.

ElGamal public-key and digital signature scheme were modified from the domain of natural

integers, Z, to the domains of Gaussian integers, Z[i], and polynomials over finite fields, F[x].

We implement the classical and modified ElGamal digital signature scheme to compare and to

test their functionality, reliability and security. To test the security of the algorithms we use a

famous attack algorithm called Baby-Step-Giant algorithm which works in the domain of natural

integers. We enhance the Baby-Step-Giant algorithm to work with the modified ElGamal digital

signature algorithms.

KEYWORDS: ElGamal digital signature, testing and evaluation.

1. INTRODUCTION
 The concept of a digital signature was introduced in 1976 by Diffie and Hellman. One of the

powerful and practical signature schemes was produced by ElGamal [3] in 1985. El-Kassar et al.

[4] and El-Kassar and Haraty [5] modified the ElGamal signature schemes from the domain of

natural integers, Z, to two principal ideal domains, namely the domain of Gaussian integers,

Z[i]={a+bi | a, b ∈ Z, i = 1− }, and the domain of polynomials over finite fields, F[x], by

extending the arithmetic needed for the modifications to these domains. In both cases, it was

shown that the same prime modulus used in the classical ElGamal scheme can be used in the new

settings to produce larger cyclic groups; hence, the message space, the key space and signature

set are enlarged without any additional effort. The larger key space makes the new schemes more

secure and harder to break. Moreover, it was shown in both cases that the arithmetic is easy and

efficient to apply.

 In this paper, we compare and evaluate the classical and modified ElGamal algorithms by

implementing and running them on a computer. We investigate the issues of complexity,

efficiency and reliability by running the programs with different sets of data. Moreover,

comparisons will be done among these different algorithms given the same data as input. In

addition, implementation of an attack algorithm will be presented. The attack algorithm consists

of subroutines used to verify the signed messages. This is done by applying certain mathematical

concepts to find the private key of the signed message. After finding the key, it will be easy to

sign the message. A study will be done using the results of running the attack algorithm to

compare the security of the different classical and modified signature scheme algorithms. A

similar comparison and evaluation was done for the RSA-Based Digital Signature Algorithms [9].

 The rest of the paper is organized as follows: section 2 describes the classical technique of

ElGamal signature scheme, which depends on the discrete logarithm problem. Then, we present

the modifications done on ElGamal signature scheme. In section 3, we deal with the testing

procedures and the attack algorithms to evaluate the classical and modified algorithms. Also,

attack programs are run to test the complexity, efficiency and reliability of the different modified

algorithms and compare them to the classical one. A conclusion is drawn in section 4.

2. CLASSICAL AND MODIFIED ELGAMAL SIGNATURE

2.1 Classical ElGamal Signature Scheme
 The classical ElGamal signature can be described as follow. Let p be a large odd prime integer

and let Zp = {0,1,2, …, p−1}. Then, Zp is a ring under addition and multiplication modulo p.

Since p is prime, Zp is actually a field under these operations. Moreover, the multiplicative group

of the ring of integers modulo p, Z*
p = {1,2,…, p−1} is a cyclic group generated by some

generator θ ≠ 1, whose multiplicative order is p−1. That is, every element of Z*
p is a power of θ.

We note that Zp is a complete residue system modulo p, and Z
*
p is a reduced residue system

modulo p. We note that a composite integer n = 2p
t
 can be used instead of the prime p.

 The key is generated by selecting a large random prime p and a generator θ of the

multiplicative group Z
*
p. Then we choose randomly an integer a, 1 ≤ a ≤ p−2, and compute θa

(mod p). The public key is (p, θ, θa
) and the private key is a.

 The signature is generated as follow. First, hash the message m to obtain the hash value f =

h(m), where h is a hash function and m is a binary message of arbitrary length. Generate a random

secret integer k such that 1 ≤ k ≤ p − 2 with gcd (k, p− 1) = 1. Compute r = θ k
 (mod p) and

compute k
−1

 mod (p−1). Then, compute s = k
−1

{h(m)−ar} mod (p−1). Entity A then sends the

signature m and the signature (r, s) to B.

 The signature is validated as follow. Obtain A’s authentic public key (p, θ, θa) and verify that 1

≤ r ≤ p − 1. Hash the message m and obtain the hash value f = h(m). Then, compute v1 = yr
r

s (mod

p) and v2 = θ h(m) (mod p). Accept the signature if v1 = v2.

2.2 ElGamal Signature Scheme in the Domain of Gaussian Integers
 For a Gaussian integer γ = a+bi, let δ(γ) = a

2
+b

2
 be the norm of γ. Two elements α and β in

Z[i] are called associates, denoted by α ~ β, iff α = ±β, ±iβ. The Gaussian primes of Z[i], up to

associates, see [7], are of the form: i) α = 1+i; ii) π and π , where q = π π is a prime of the form

4k+1; iii) prime p of the form 4k+3. The domain of Gaussian integers is a factorization domain in

which every nonzero element γ can be expressed as a product of primes. Let η ∈ Z[i]. and let Gη

be a complete residue system modulo η. We define the function q(η) to be the number of element

in Gη. For any two elements β and γ in Z[i], it is true that q(βγ) = q(β)q(γ); see [1]. In [1], Cross

gave a full description of the complete residue systems modulo prime powers of Gaussian

integers. In particular, when p is a Gaussian prime of the form 4k+3 and π is a factor the odd

prime q = π π , where q is a prime integer of the form 4k+1, we have

Gπ ={a | 0 ≤ a ≤ q−1}

and

Gp ={a+bi | 0≤ a ≤ p−1, 0 ≤ b ≤ p−1}.

 For a Gaussian integer β, let G
*
β be the elements of Gβ that are relatively prime to β, i.e., γ ∈

G*β iff γ ∈ Gβ and gcd(γ,β) = 1. The set G
*
β is called a reduced residue system modulo β. Also,

G
*
β is the group of units of Gβ. When β is a Gaussian prime, Gβ is a field and G

*
β is the set of

nonzero elements. The number of elements in any reduced residue system G
*
β, which is the order

of the group of units of Gβ, is constant and is denoted by φ(β). Note that φ(β) is an extension of

Euler’s phi-function. The value of φ(β) is obtained by using the fact that φ(β) is a multiplicative

function and that the value of φ(β), when β is a prime power, see [1] or [3], is given by: i) φ(πn
) =

q
n−1

(q−1); ii) φ(p
n
) = p

n
– p

2n−2
= p

2n−2
(p

2−1); iii) φ(αn
) = 2

n
 − 2

n−1
.

 A Gaussian integer β is said to have a primitive root iff G
*
β is cyclic. In such case, any

generator θ of the cyclic group G
*
β is called a primitive root of β. J.T.Cross [1] showed that a

Gaussian integer β has a primitive root iff β is 1+i , (1+i)
2
, (1+i)

3
, πn

, p, απn
 or αp. For a

Gaussian prime β, one can find a generator of G
*
β by randomly choosing an element θ in G

*
β and

computes φ(β) = q(β)−1 = k

kppp
ααα 21

21 . Then θ is a generator if

1

)(

≡/θ

βφ

jp
 (mod β)

for all primes pj dividing φ(β). Otherwise, choose another value for θ. The process is repeated

until a generator is found.

 Arithmetics in the domain of Gaussian integers can be applied to extend ElGamal signature as

follows. First, a Gaussian prime β has to be chosen. Note that if β is a prime of the form π, where

π π = p = 4k + 1, then Gβ = Gπ = {0, 1, …, p−1} = Zp. The calculations in this case are identical

to ElGamal signature in the domain of integers. Thus, we choose a large Gaussian prime β of the

form 4k+3. Note that the number of elements in Gβ is q(β) = p
2
 and hence φ(β) = p

2−1. Thus, the

cyclic group used in the Extended ElGamal signature has an order larger than the square of the

order of the cyclic group used in the Classical ElGamal signature. This larger setting is obtained

with no additional efforts required for finding the prime p.

 Now, a generator θ of G
*
β is chosen as described previously. Note that there are φ(p

2−1)

generators in G
*
β. A random positive integer a is then chosen in order to obtain the public-key (p,

θ, θa
). Since a is a power of θ, a must be a positive integer less than the order of the group power

G
*
β, which is p

2
– 1. This power a is the private key.

 To sign a message m, first hash the message to obtain the hash-value f = h(m). Then select a

random secret integer k such that 1 ≤ k ≤ p
2 − 2 with gcd (k, p

2−1) = 1 and compute r = θ k
 (mod

p). Note that r is in Gβ = Gp = {a+bi | 0 ≤ a ≤ p−1, 0 ≤ b ≤ p−1}. Next, compute k
−1

 mod (p
2−1)

and s = k
−1

{h(m)−ak} mod (p
2−1). Also, compute δ = r

a
 = y

k
(mod β). Send the binary message

m and the signature (r, s, δ).

 To validate the signature, obtain the authentic public key (p, θ, θa
) and verify that r ∈G

*
β.

Hash the message m and obtain the hash value f = h(m). Compute v1 = δr
s
(mod β) and compute

v2 = θ
h(m)

(mod β). Accept the signature only if v1 = v2.

2.3 ElGamal Signature over Quotient Rings of Polynomials over Finite Fields
 The generalized ElGamal signature in the setting of a finite field Fq, where q = pⁿ for an odd

prime integer p and a positive integer n, is based on working with the quotient ring Zp[x]/<h(x)>,

where h(x) is an irreducible polynomial over Zp[x]. We extend the ElGamal signature to the

setting of a finite field. It is well known that Zp[x]/<h(x)> is a field whose elements are the

congruence classes modulo h(x) of polynomials in Zp[x] with degree less than n. We identify this

field by the complete residue system A(h(x)) = {a0+a1x+...+ an−1x
n−1

 | a’s ∈ Zp}. Note that

Zp[x]/<h(x)> is of order pⁿ and its nonzero elements form a cyclic group denoted by

U(Zp[x]/<h(x)>) whose order is φ(h(x)) = pⁿ−1. Let θ(x) be a generator of the cyclic group so that

every element in U(Zp[x]/<h(x)>) is a power of θ(x).

 The ElGamal public-key signature is also extended in the setting of the cyclic group of the

finite quotient ring Zp[x]/<f(x)>, where f(x) is a reducible polynomial of degree n. El-Kassar et [4]

obtained a characterization for which U(Zp[x]/<f(x)>) is cyclic. A particular case of interest is

when f(x) = h(x)², where h(x) is linear and U(Zp[x]) is cyclic and isomorphic to Zp−1× Zp. Hence,

we can say that the extension of the ElGamal scheme in this case applies to the group of units of

the ring Zp[x]/<x²>, of order φ(x²) = p²−p. We note that U(Zp[x]/<x²>)

={c+dx|1≤c≤p−1,0≤d≤p−1}.

 Entity A should select an odd prime p and a polynomial f(x) of degree n, f(x) is irreducible or

f(x) = x
2
. Then A computes φ(f(x)) and finds a generator θ(x) of U(Zp[x]/<f(x)>). Next A selects a

random integer a, 1≤a≤ φ(f(x))−1 and finds y(x) = θ(x)
a
(mod f(x)). The public-key is (p,f(x),θ(x),

y(x)) and the private-key is a.

 To generate a signature of a message, we represent the message as a polynomial m(x) and

select a random secret integer k, 1≤ k ≤ φ(f(x))−1 such that gcd(k, φ(f(x))−1) = 1. Compute

h(m(x)), r(x) = θ(x)
k
 (mod f(x)), k

−1
(mod φ(f(x))−1), s = k

−1
{h(m(x))−a.k} (mod φ(f(x))−1), and

δ(x) = r(x)
a
(modf(x)). Send (r(x), s, δ(x)).

 To verify that the message m(x), obtain the authentic public key (p,f(x),θ(x),y(x)) and make sure

that r(x)∈U(Zp[x]/<f(x)>), otherwise reject the signature. Compute v1(x) = δ(x)r(x)s (mod f(x)).

Compute h(m(x)) and v2(x) = θ(x)
h(m(x))

 (mod f(x)). Accept the signature only if v1(x) = v2(x).

3. TESTING AND EVALUATION

3.1 ElGamal Based Digital Signature Algorithm

 Using Mathematica 5.0 functions and an additional abstract algebra library, we have written

programs for the following algorithms:

1.Classical ElGamal.

2.Classical ElGamal with n of the form 2p
t.

3.ElGamal with Gaussian numbers.

4.ElGamal with irreducible polynomials.

5.ElGamal with reducible polynomials.

 The various procedures were compared as follows:

 a-A total of 25 runs of the various algorithms were conducted. In each run, a 20-digit random

prime integer p of the form 4k+3 was generated.

 b-The same prime p was used for all algorithms.

 c-For each method a public key was generated by finding a generator θ, a random integer a,

and computing θ
a
.

 d-Using the public key (θ, θ
a
), the same message m = 12345678 was signed by all algorithms to

obtain the signature (r, s, δ).

 e-The verification algorithms were then used to verify the signature.

 f-All algorithms used the built-in Mathematica functions for modular arithmatic and for finding

powers modulo an integer, Gaussian integer or a polynomial over Zp.

 g-The running times of the algorithm (Key generation, signature, verification) for each method

were recorded.

 Note that the cyclic groups used, and their corresponding orders, are:

1.Classical ElGamal: Zp
*
 of order p.

2.Classical ElGamal with n of the form 2p
2
: Zn

*
 of order p

2−p.

3.ElGamal with Gaussian integers: Gp
*
 of order p

2−1.

4.ElGamal with reducible polynomials: U(Zp[x]/<x²>) of order p
2−p.

5.ElGamal with irreducible polynomials: U(Zp[x]/<x²+ax+b>) of order p
2−1.

 Except for the classical ElGamal in the setting of the cyclic group Zp
*
, all cyclic groups used

have comparable sizes. Hence, we expect the algorithms in the first case to be much faster. A

different prime p having 40 digits could have been used for that case; but this would have been

equivalent to case 2.

 After running the programs, it was clear that these programs have applied the ElGamal

signature scheme in the correct way. All the programs have generated a public and private key

with different mathematical concepts. Then a message is signed using the signature scheme and is

sent to a verification procedure which verify the signature. After running and comparing the

programs without considering the time of generating the irreducible polynomial, we observe the

following:

 a- All programs are reliable; they can sign and verify any signature.

 b- The complexity for each of the algorithms is O(n²).

 c- The reducible polynomial signature scheme is reliable but took more time to generate a key

and to sign a message. This does not mean that it is inefficient because it is more secure than the

other algorithms.

 d- The irreducible polynomial program in the setting Zp[x]/<x²+ax+b> worked well but

requires more time. The encryption and decryption execution time for the irreducible polynomial

scheme is slightly more than that of the reducible case.

 e-The key generation time for the irreducible polynomial scheme is considerably more than

that of the other methods. This is due to the fact that an irreducible polynomial must be generated

before a generator θ is found. On average, it took about 0.4 sec to generate a quadratic irreducible

polynomial for a 20-digit prime number.

 By comparing the average execution time of these algorithms including the time taken to find

an irreducible polynomial in the key generating algorithm, we observe the following:

 a- The time for generating the key depends on finding the generator θ and not the prime p.

The time for generating a prime number is negligible. The average time need for generating a

100-digit (recommended size) random prime is approximately 0.1 sec.

 b- It took more time to find the key in the case of polynomials. This will not be a problem if

common system-wide parameters are used. In such a case, all entities may elect to use the same

cyclic group G and generator φ. Also, once a generator φ for a given prime p is found, all other

generators can be easily obtained.

 c- The time needed to encrypt and to decrypt the message for the classical, modified 2p
t and

Gaussian is better than the time needed for the polynomials. However, the time is very reasonable

even for larger primes.

 d- Overall, the Gaussian integers methods performed very well. The algorithms can be made

more efficient by modifying Mathematica built-in functions to take advantage of the arithmetic

modulo the Gaussian prime p of the form 4k+3.

 e- The key generation time in the case of Gaussian integers is less than that of the modified 2p
t

method. This is due to the fact that the number of generators is φ(p(p−1)), is almost always more

than that in Gp
∗, which is φ(p

2−1). In fact, among the first 200,000 primes, there are only 7 primes

p of the form 4k+3 for which φ(p2−1)>φ(p(p−1)).

 f-The reducible polynomial method is little slower but provide more security. The irreducible

polynomial method is not recommended since it is as secure as the reducible case but requires

more time especially in finding the key.

3.2 Attack Algorithm

 In order to attack any protocol that uses ElGamal signature scheme we have to solve the

discrete logarithm problem. We enhanced the Exhaustive search and Baby-step giant-step

algorithms to work with the modified algorithms.

 To test the security of the algorithms, we implemented and applied the attack schemes to the

classical and modified signature algorithms. The ElGamal algorithm using irreducible

polynomials was not tested since the attack time would be equivalent to that of the reducible

polynomial case. For the exhaustive search algorithm, a random 3-digit prime p of the form 4k+3

was generated and a public key was obtained for each the four methods using the same prime.

 Attacking the ElGamal schemes using Baby-step giant-step algorithm, a random 4-digit prime

p of the form 4k+3 was generated and a public key was obtained for each the four methods using

the same prime. After running these attack algorithms, we observed the following:

 a- All the attack programs are reliable so they can forge any message by finding the private

key.

 b- The 2p
t algorithm is stronger than the classical algorithm because we have an unknown

power t.

 c- The Gaussian algorithm is stronger than the classical algorithm. The attack algorithm for

Gaussian integers required more time than that of the 2p
2
 algorithm.

 d- The most difficult algorithm to attack is in the polynomial domain. This is due to the fact

that mathematically it is complex and needs considerable computing time to perform arithmetic

modulo a given polynomial.

4. CONCLUSIONS
 In this work, we presented the classic ElGamal signature scheme and four modifications.

We implemented these algorithms and tested their efficiency, reliability, and security. The results

obtained showed that all the algorithms applied the ElGamal signature scheme correctly and

generated public and private key using different mathematical concepts. Messages were then

signed using the signature scheme and were sent to a verification procedure which verifies the

signature.

 We also built attack scenarios directly aimed at solving the discrete logarithm problem that

these algorithms utilize. We modified the Baby-step Giant-step algorithm to handle the modified

algorithms. We observed that the classical ElGamal scheme is the weakest to attack and one of

the modified methods should be used. The ElGamal scheme in the multiplicative group Zn
*
,

where n = 2p
2
, is the easiest to apply and the weakest among the modified method. The ElGamal

scheme in the domain of Gaussian is superior to that of Zn
*
 since it requires less time to generate

a key, about the same time to sign and verify a signature, and is more secure. The ElGamal

scheme in the setting of a finite field has a disadvantage in finding an irreducible polynomial. The

reducible polynomial scheme was the most challenging to attack due to the mathematical

complexity of arithmetic modulo a polynomial.

5. REFERENCES

[1] J. T. Cross, “The Euler's ϕ-function in the Gaussian Integers”, American Mathematics

Monthly Vol. 90, 1983, pp. 518-528.

[2] W. Diffie, and M. E. Hellman,, “New directions in cryptography”, IEEE Transaction on

Information Theory, IT-22, 1978, pp. 472-492.

[3] T. ElGamal, “A Public key cryptosystem and a signature scheme based on discrete

logarithms”, IEEE Transactions on Information Theory, IT-31, 1985, pp. 469-472.

[4] A. N. El-Kassar, Chihadi H., and D. Zentout, “Quotient rings of polynomials over finite fields

with cyclic group of units”, Proc. International Conference on Research Trends in Science and

Technology, Beirut, Lebanon, 2002, pp. 257-266.

[5] A. N. El-Kassar and R. Haraty, “ElGamal public-key cryptosystem using reducible

polynomials over a finite field”, Proc. ISCA 13th International Conference on Intelligent and

Adaptive Systems and Software Engineering, ISCA 2004, Nice, France, 2004, 189-194.

[6] A. J. Menezes, P.C. Van Oorshot, and S. A. Vanstone, Handbook of Applied Cryptography,

CRC press, 1997.

[7] R. Haraty and A. N. El-Kassar, “A Comparative Study of ElGamal Based Cryptographic

Algorithms”, Journal of Theoretical and Applied Computing, Vol. 12, 2005.

[8] R. Haraty and A. N. El-Kassar, “El Gamal Public-Key Cryptosystem in Multiplicative Groups

of Quotient Rings of Polynomials over Finite Fields”, Journal of Computer Science and

Information Systems. Vol. 2, 2005.

[9] R. Haraty, A. N. El-Kassar, and B. Shebaro, “A Comparative Study of RSA-Based Digital

Signature Algorithms”, Journal of Mathematics and Statistics Science, Vol. 2, 2006.

[10] R. Haraty and A. N. El-Kassar, “Attacking El Gamal Based Cryptographic

Algorithms Using Pollard's Rho Algorithm”, Proc. ACS/IEEE International Conference

on Computer Systems and Applications (AICCSA 2005). Cairo, Egypt, 2005

