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ABSTRACT  
A powerful and practical public-key and digital signature scheme was produced by ElGamal. 

ElGamal public-key and digital signature scheme were modified from the domain of natural 

integers, Z, to the domains of Gaussian integers, Z[i], and polynomials over finite fields, F[x]. 

We implement the classical and modified ElGamal digital signature scheme to compare and to 

test their functionality, reliability and security. To test the security of the algorithms we use a 

famous attack algorithm called Baby-Step-Giant algorithm which works in the domain of natural 

integers. We enhance the Baby-Step-Giant algorithm to work with the modified ElGamal digital 

signature algorithms. 
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1. INTRODUCTION  
     The concept of a digital signature was introduced in 1976 by Diffie and Hellman. One of the 

powerful and practical signature schemes was produced by ElGamal [3] in 1985. El-Kassar et al. 

[4] and El-Kassar and Haraty [5] modified the ElGamal signature schemes from the domain of 

natural integers, Z, to two principal ideal domains, namely the domain of Gaussian integers, 

Z[i]={a+bi | a, b ∈ Z, i = 1− }, and the domain of polynomials over finite fields, F[x], by 

extending the arithmetic needed for the modifications to these domains. In both cases, it was 

shown that the same prime modulus used in the classical ElGamal scheme can be used in the new 

settings to produce larger cyclic groups; hence, the message space, the key space and signature 

set are enlarged without any additional effort. The larger key space makes the new schemes more 

secure and harder to break. Moreover, it was shown in both cases that the arithmetic is easy and 

efficient to apply. 

    In this paper, we compare and evaluate the classical and modified ElGamal algorithms by 

implementing and running them on a computer. We investigate the issues of complexity, 

efficiency and reliability by running the programs with different sets of data. Moreover, 

comparisons will be done among these different algorithms given the same data as input. In 

addition, implementation of an attack algorithm will be presented. The attack algorithm consists 

of subroutines used to verify the signed messages. This is done by applying certain mathematical 

concepts to find the private key of the signed message. After finding the key, it will be easy to 

sign the message. A study will be done using the results of running the attack algorithm to 

compare the security of the different classical and modified signature scheme algorithms. A 

similar comparison and evaluation was done for the RSA-Based Digital Signature Algorithms [9]. 

    The rest of the paper is organized as follows: section 2 describes the classical technique of 

ElGamal signature scheme, which depends on the discrete logarithm problem. Then, we present 

the modifications done on ElGamal signature scheme. In section 3, we deal with the testing 

procedures and the attack algorithms to evaluate the classical and modified algorithms. Also, 



attack programs are run to test the complexity, efficiency and reliability of the different modified 

algorithms and compare them to the classical one. A conclusion is drawn in section 4. 

 

2. CLASSICAL AND MODIFIED ELGAMAL SIGNATURE  

2.1 Classical ElGamal Signature Scheme  
     The classical ElGamal signature can be described as follow. Let p be a large odd prime integer 

and let Zp = {0,1,2, …, p−1}. Then, Zp is a ring under addition and multiplication modulo p. 

Since p is prime, Zp is actually a field under these operations. Moreover, the multiplicative group 

of the ring of integers modulo p, Z*
p = {1,2,…, p−1} is a cyclic group generated by some 

generator θ ≠ 1, whose multiplicative order is p−1. That is, every element of Z*
p is a power of θ. 

We note that Zp is a complete residue system modulo p, and Z
*
p is a reduced residue system 

modulo p. We note that a composite integer n = 2p
t
 can be used instead of the prime p. 

     The key is generated by selecting a large random prime p and a generator θ of the 

multiplicative group  Z
*
p. Then we choose randomly an integer a, 1 ≤ a ≤  p−2, and compute θa 

(mod p). The public key is ( p, θ, θa 
) and the  private key is a. 

     The signature is generated as follow. First, hash the message m to obtain the hash value f = 

h(m), where h is a hash function and m is a binary message of arbitrary length. Generate a random 

secret integer k such that  1 ≤  k  ≤  p − 2 with gcd ( k, p− 1 ) = 1. Compute r = θ k
 (mod p) and 

compute k
−1

 mod (p−1). Then, compute s = k
−1

{h(m)−ar} mod (p−1). Entity A then sends the 

signature m and the signature (r, s) to B. 

    The signature is validated as follow. Obtain A’s authentic public key (p, θ, θa ) and verify that 1 

≤ r ≤ p − 1. Hash the message m and obtain the hash value f = h(m). Then, compute v1 = yr 
r

s (mod 

p)  and v2 = θ h(m)  (mod p). Accept the signature if v1 = v2.  
 

2.2 ElGamal Signature Scheme in the Domain of Gaussian Integers 
     For a Gaussian integer γ = a+bi, let δ(γ) = a

2
+b

2
 be the norm of γ. Two elements α and β in 

Z[i] are called associates, denoted by α ~ β, iff α = ±β, ±iβ. The Gaussian primes of Z[i], up to 

associates, see [7], are of the form: i) α = 1+i; ii) π and  π , where q = π π  is a prime of the form 

4k+1; iii) prime p of the form 4k+3. The domain of Gaussian integers is a factorization domain in 

which every nonzero element γ can be expressed as a product of primes. Let η ∈ Z[i]. and let Gη 

be a complete residue system modulo η. We define the function q(η) to be the number of element 

in Gη. For any two elements β and γ in Z[i], it is true that q(βγ) = q(β)q(γ); see [1]. In [1], Cross 

gave a full description of the complete residue systems modulo prime powers of Gaussian 

integers. In particular, when p is a Gaussian prime of the form 4k+3 and π is a factor the odd 

prime q = π π , where q is a prime integer of the form 4k+1, we have 

Gπ ={a | 0 ≤ a ≤ q−1} 

and 

Gp ={a+bi |  0≤ a ≤ p−1, 0 ≤ b ≤ p−1}. 

     For a Gaussian integer β, let G
*
β be the elements of Gβ that are relatively prime to β, i.e., γ ∈ 

G*β iff γ ∈ Gβ and gcd(γ,β) = 1. The set G
*
β is called a reduced residue system modulo β. Also, 

G
*
β is the group of units of Gβ. When β is a Gaussian prime, Gβ is a field and G

*
β is the set of 

nonzero elements. The number of elements in any reduced residue system G
*
β, which is the order 

of the group of units of Gβ, is constant and is denoted by φ(β). Note that φ(β) is an extension of 

Euler’s phi-function. The value of φ(β) is obtained by using the fact that φ(β) is a multiplicative 

function and that the value of φ(β), when β is a prime power, see [1] or [3], is given by: i) φ(πn
) = 

q
n−1

(q−1); ii) φ(p
n
) = p

n 
– p

2n−2 
= p

2n−2
(p

2−1); iii) φ(αn
) = 2

n
 − 2

n−1
. 

     A Gaussian integer β is said to have a primitive root iff G
*
β is cyclic. In such case, any 

generator θ of the cyclic group G
*
β is called a primitive root of β. J.T.Cross [1] showed that a 



Gaussian integer β has a primitive root iff β is 1+i , (1+i)
2
, (1+i)

3
, πn

, p,   απn
 or αp. For a 

Gaussian prime β, one can find a generator of G
*
β by randomly choosing an element θ in G

*
β and 

computes φ(β) = q(β)−1 = k

kppp
ααα .... 21

21 . Then θ is a generator if  

1

)(

≡/θ

βφ

jp
 (mod β)  

for all primes pj dividing φ(β). Otherwise, choose another value for θ. The process is repeated 

until a generator is found. 

     Arithmetics in the domain of Gaussian integers can be applied to extend ElGamal signature as 

follows. First, a Gaussian prime β has to be chosen. Note that if β is a prime of the form π, where 

π π  = p = 4k + 1,  then Gβ = Gπ = {0, 1, …, p−1} = Zp. The calculations in this case are identical 

to ElGamal signature in the domain of integers. Thus, we choose a large Gaussian prime β of the 

form 4k+3. Note that the number of elements in Gβ is  q(β) = p
2
 and hence φ(β) = p

2−1. Thus, the 

cyclic group used in the Extended ElGamal signature has an order larger than the square of the 

order of the cyclic group used in the Classical ElGamal signature. This larger setting is obtained 

with no additional efforts required for finding the prime p.  

    Now, a generator θ of G
*
β is chosen as described previously. Note that there are φ(p

2−1) 

generators in G
*
β. A random positive integer a is then chosen in order to obtain the public-key (p, 

θ, θa
). Since a is a power of θ, a must be a positive integer less than the order of the group power 

G
*
β, which is p

2 
– 1. This power a is the private key. 

     To sign a message m, first hash the message to obtain the hash-value f = h(m). Then select a 

random secret integer k such that 1 ≤ k ≤ p
2 − 2 with gcd (k, p

2−1) = 1 and compute r = θ k
 (mod 

p). Note that r is in Gβ = Gp = {a+bi |  0 ≤ a ≤ p−1, 0 ≤ b ≤ p−1}. Next, compute k
−1

 mod (p
2−1) 

and s = k
−1

{h(m)−ak} mod (p
2−1). Also, compute δ  =  r

a
 = y

k 
(mod β). Send the binary message 

m  and the signature (r, s, δ). 

     To validate the signature, obtain the authentic public key (p, θ, θa 
) and verify that r ∈G

*
β. 

Hash the message m and obtain the hash value f = h(m). Compute v1 = δr
s 
(mod β) and  compute 

v2 = θ 
h(m)  

(mod β). Accept the signature only if v1 = v2. 

 
2.3 ElGamal Signature over Quotient Rings of Polynomials over Finite Fields 
     The generalized ElGamal signature in the setting of a finite field Fq, where q = pⁿ for an odd 

prime integer p and a positive integer n, is based on working with the quotient ring Zp[x]/<h(x)>, 

where h(x) is an irreducible polynomial over Zp[x]. We extend the ElGamal signature to the 

setting of a finite field. It is well known that Zp[x]/<h(x)> is a field whose elements are the 

congruence classes modulo h(x) of polynomials in Zp[x] with degree less than n. We identify this 

field by the complete residue system A(h(x)) = {a0+a1x+...+ an−1x
n−1

 | a’s ∈ Zp}. Note that 

Zp[x]/<h(x)> is of order pⁿ and its nonzero elements form a cyclic group denoted by 

U(Zp[x]/<h(x)>) whose order is φ(h(x)) = pⁿ−1. Let θ(x) be a generator of the cyclic group so that 

every element in U(Zp[x]/<h(x)>) is a power of θ(x).  

     The ElGamal public-key signature is also extended in the setting of the cyclic group of the 

finite quotient ring Zp[x]/<f(x)>, where f(x) is a reducible polynomial of degree n. El-Kassar et [4] 

obtained a characterization for which U(Zp[x]/<f(x)>)  is cyclic. A particular case of interest is 

when f(x) = h(x)², where h(x) is linear and U(Zp[x]) is cyclic and isomorphic to Zp−1× Zp. Hence, 

we can say that the extension of the ElGamal scheme in this case applies to the group of units of 

the ring Zp[x]/<x²>, of order φ(x²) = p²−p. We note that U(Zp[x]/<x²>) 

={c+dx|1≤c≤p−1,0≤d≤p−1}.  

     Entity A should select an odd prime p and a polynomial f(x) of degree n, f(x) is irreducible or 

f(x) = x
2
. Then A computes φ(f(x)) and finds a generator θ(x) of U(Zp[x]/<f(x)>). Next A selects a 



random integer a, 1≤a≤ φ(f(x))−1 and finds  y(x) = θ(x)
a
(mod f(x)). The public-key is  (p,f(x),θ(x), 

y(x)) and the private-key is a.  

     To generate a signature of a message, we represent the message as a polynomial m(x) and 

select a random secret integer k, 1≤ k ≤ φ(f(x))−1 such that gcd(k, φ(f(x))−1) = 1. Compute 

h(m(x)), r(x) = θ(x)
k
  (mod f(x)), k

−1 
(mod φ(f(x))−1), s = k

−1
{h(m(x))−a.k} (mod φ(f(x))−1),  and 

δ(x) = r(x)
a 
(modf(x)). Send (r(x), s, δ(x)). 

   To verify that the message m(x), obtain the authentic public key (p,f(x),θ(x),y(x)) and make sure 

that r(x)∈U(Zp[x]/<f(x)>), otherwise reject the signature. Compute v1(x) = δ(x)r(x)s (mod f(x)). 

Compute h(m(x)) and v2(x) = θ(x)
h(m(x))

 (mod f(x)). Accept the signature only if v1(x) = v2(x). 

 

3. TESTING AND EVALUATION 

3.1 ElGamal Based Digital Signature Algorithm 

     Using Mathematica 5.0 functions and an additional abstract algebra library, we have written 

programs for the following algorithms: 

1.Classical ElGamal. 

2.Classical ElGamal with n of the form 2p
t. 

3.ElGamal with Gaussian numbers. 

4.ElGamal with irreducible polynomials. 

5.ElGamal with reducible polynomials. 

    The various procedures were compared as follows: 

    a-A total of 25 runs of the various algorithms were conducted. In each run, a 20-digit random 

prime integer p of the form 4k+3 was generated. 

    b-The same prime p was used for all algorithms. 

    c-For each method a public key was generated by finding a generator θ, a random integer a, 

and computing θ
a
. 

    d-Using the public key (θ, θ
a
), the same message m = 12345678 was signed by all algorithms to 

obtain the signature (r, s, δ). 

    e-The verification algorithms were then used to verify the signature. 

    f-All algorithms used the built-in Mathematica functions for modular arithmatic and for finding 

powers modulo an integer, Gaussian integer or a polynomial over Zp. 

    g-The running times of the algorithm (Key generation, signature, verification) for each method 

were recorded. 

    Note that the cyclic groups used, and their corresponding orders, are: 

1.Classical ElGamal: Zp
*
 of order p. 

2.Classical ElGamal with n of the form 2p
2
: Zn

*
 of order p

2−p. 

3.ElGamal with Gaussian integers: Gp
*
 of order p

2−1. 

4.ElGamal with reducible polynomials:  U(Zp[x]/<x²>) of order p
2−p. 

5.ElGamal with irreducible polynomials: U(Zp[x]/<x²+ax+b>) of order p
2−1. 

     Except for the classical ElGamal in the setting of the cyclic group Zp
*
, all cyclic groups used 

have comparable sizes. Hence, we expect the algorithms in the first case to be much faster. A 

different prime p having 40 digits could have been used for that case; but this would have been 

equivalent to case 2. 

    After running the programs, it was clear that these programs have applied the ElGamal 

signature scheme in the correct way. All the programs have generated a public and private key 

with different mathematical concepts. Then a message is signed using the signature scheme and is 

sent to a verification procedure which verify the signature. After running and comparing the 

programs without considering the time of generating the irreducible polynomial, we observe the 

following: 

    a- All programs are reliable; they can sign and verify any signature. 

    b- The complexity for each of the algorithms is O(n²). 



    c- The reducible polynomial signature scheme is reliable but took more time to generate a key 

and to sign a message. This does not mean that it is inefficient because it is more secure than the 

other algorithms. 

    d- The irreducible polynomial program in the setting Zp[x]/<x²+ax+b> worked well but 

requires more time. The encryption and decryption execution time for the irreducible polynomial 

scheme is slightly more than that of the reducible case. 

    e-The key generation time for the irreducible polynomial scheme is considerably more than 

that of the other methods. This is due to the fact that an irreducible polynomial must be generated 

before a generator θ is found. On average, it took about 0.4 sec to generate a quadratic irreducible 

polynomial for a 20-digit prime number. 

     By comparing the average execution time of these algorithms including the time taken to find 

an irreducible polynomial in the key generating algorithm, we observe the following: 

        a- The time for generating the key depends on finding the generator θ and not the prime p. 

The time for generating a prime number is negligible. The average time need for generating a 

100-digit (recommended size) random prime is approximately 0.1 sec. 

    b- It took more time to find the key in the case of polynomials. This will not be a problem if 

common system-wide parameters are used. In such a case, all entities may elect to use the same 

cyclic group G and generator φ. Also, once a generator φ for a given prime p is found, all other 

generators can be easily obtained. 

    c- The time needed to encrypt and to decrypt the message for the classical, modified 2p
t and 

Gaussian is better than the time needed for the polynomials. However, the time is very reasonable 

even for larger primes. 

    d- Overall, the Gaussian integers methods performed very well. The algorithms can be made 

more efficient by modifying Mathematica built-in functions to take advantage of the arithmetic 

modulo the Gaussian prime p of the form 4k+3. 

    e- The key generation time in the case of Gaussian integers is less than that of the modified 2p
t
 

method. This is due to the fact that the number of generators is φ(p(p−1)), is almost always more 

than that in Gp
∗, which is φ(p

2−1). In fact, among the first 200,000 primes, there are only 7 primes 

p of the form 4k+3 for which φ(p2−1)>φ(p(p−1)). 

    f-The reducible polynomial method is little slower but provide more security. The irreducible 

polynomial method is not recommended since it is as secure as the reducible case but requires 

more time especially in finding the key. 

 

3.2 Attack Algorithm 

    In order to attack any protocol that uses ElGamal signature scheme we have to solve the 

discrete logarithm problem. We enhanced the Exhaustive search and Baby-step giant-step 

algorithms to work with the modified algorithms. 

    To test the security of the algorithms, we implemented and applied the attack schemes to the 

classical and modified signature algorithms. The ElGamal algorithm using irreducible 

polynomials was not tested since the attack time would be equivalent to that of the reducible 

polynomial case. For the exhaustive search algorithm, a random 3-digit prime p of the form 4k+3 

was generated and a public key was obtained for each the four methods using the same prime.  

    Attacking the ElGamal schemes using Baby-step giant-step algorithm, a random 4-digit prime 

p of the form 4k+3 was generated and a public key was obtained for each the four methods using 

the same prime. After running these attack algorithms, we observed the following: 

    a- All the attack programs are reliable so they can forge any message by finding the private 

key. 

    b- The 2p
t algorithm is stronger than the classical algorithm because we have an unknown 

power t. 



    c- The Gaussian algorithm is stronger than the classical algorithm. The attack algorithm for 

Gaussian integers required more time than that of the 2p
2
 algorithm. 

    d- The most difficult algorithm to attack is in the polynomial domain. This is due to the fact 

that mathematically it is complex and needs considerable computing time to perform arithmetic 

modulo a given polynomial. 

 

4. CONCLUSIONS 
          In this work, we presented the classic ElGamal signature scheme and four modifications. 

We implemented these algorithms and tested their efficiency, reliability, and security. The results 

obtained showed that all the algorithms applied the ElGamal signature scheme correctly and 

generated public and private key using different mathematical concepts. Messages were then 

signed using the signature scheme and were sent to a verification procedure which verifies the 

signature. 

    We also built attack scenarios directly aimed at solving the discrete logarithm problem that 

these algorithms utilize. We modified the Baby-step Giant-step algorithm to handle the modified 

algorithms. We observed that the classical ElGamal scheme is the weakest to attack and one of 

the modified methods should be used. The ElGamal scheme in the multiplicative group Zn
*
, 

where n = 2p
2
, is the easiest to apply and the weakest among the modified method. The ElGamal 

scheme in the domain of Gaussian is superior to that of Zn
*
 since it requires less time to generate 

a key, about the same time to sign and verify a signature, and is more secure. The ElGamal 

scheme in the setting of a finite field has a disadvantage in finding an irreducible polynomial. The 

reducible polynomial scheme was the most challenging to attack due to the mathematical 

complexity of arithmetic modulo a polynomial.  
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