

The TOR Data Communication System: A Survey
Ramzi A. Haraty and Bassam Zantout

Department of Computer Science and Mathematics

Lebanese American University

Beirut, Lebanon 1102 2801

 rharaty@lau.edu.lb; bassam.zantout@lau.edu

Abstract--Since the day the Internet became a common and

reliable mechanism for communication and data transfer,

security officers and enthusiasts rallied to enforce security

standards on data transported over the globe. Whenever a user

tries communicating with another recipient on the Internet, vital

information is sent over different networks until the information

is dropped, intercepted, or normally reaches the recipient.

Critical information traversing networks is usually encrypted. In

order to conceal the sender’s identity, different implementations

have proven successful - one of which is the invention of

anonymous networks. This paper thoroughly investigates one of

the most common and existing techniques used during data

communication for avoiding traffic analysis as well as assuring

data integrity - TOR. The paper also scrupulously presents the

benefits and drawbacks of TOR.

Keywords--Anonymous system; data communication; security and

integrity, and TOR.

I. INTRODUCTION

Onion Routing was originally prototyped by Sun Solaris

2.5.1/2.6 with implementations for web browsing, remote

login, and sanitizing user information while transmitting

information through data streams. The idea and further

implementation of Onion Routing was based on the work of

David Chaum (Chaum mixes) and further continued and

enhanced by Michael G. Reed, Pal F. Syverson, and David M.

Goldschlag from the US Naval Research Laboratory [1].

 In 1995 the US Navy Office of Naval Research sponsored

the aforementioned authors to work on an anonymous

communication mechanism that allows computer users to send

and receive information over the Internet while remaining

anonymous, as well as, preventing against traffic analysis and

eavesdropping. At the time, some implementations for

eavesdropping prevention were available and being utilized

(anonymizer, mixes); however, most implementations had

major drawbacks that could not prevent against traffic analysis

attacks. As a result, the Onion Routing research started in

1995 and was implemented in a thirteen node network

distributed over various institutions, governmental offices, and

academic organizations that gained significant attention of

security enthusiasts, researchers, and particularly the US

government.

 In 1997 the project was funded by the United States

Department of Defense Advanced Research Projects Agency

(DARPA) under the High Confidence Network Program, and

more work was put on the original design and components of

the algorithm and implementation. In 1998 a prototype of the

project was running with an average 50,000 hits per day with a

peak of 84,022 simultaneous connections on the system.

DARPA and other sponsors of this project were also interested

in applying the same onion routing methodology not only

Internet appliances, but also on cell phones and other

communication devices not necessarily using the Internet in

order to achieve anonymity.

 Little work and improvements were added to Onion during

the period 1998 and 2000 due to lack of funding and interest.

In 2001-2002, and after winning the Edison Invention Award,

the first generation of the code was abandoned to be replaced

with a second generation onion routing that was called Tor. To

this date Tor and the Onion Routing project are funded by

ONR and DARPA whereby it is still under development with

probably one of the largest testing labs in the world, the

Internet. Tor operates with almost 900 dedicated onion routers

worldwide, generating and processing 960Mb/sec of

bidirectional data streams [2][3].

 This paper investigates the implementation of Tor, which is

widely used today and has made a major impact on the world

of networking and particularly peer-to-peer communication.

The remainder of the paper is organized as follows: Section 2

presents background material. Section 3 concentrates on Tor,

outlining its features, advantages as well as its drawbacks.

Section 4 provides a conclusion.

II. BACKGROUND

Prior to Onion Routing, a previous implementation based on a

simple model by David Chaum of the University of California,

Berkeley [4] was introduced to solve this problem of source

and destination identification through traffic analysis

avoidance. Chaum mixes is a simple process where the

identity of the sender is hidden from the receiving entity. All

traffic sent back and forth from sender to receiver goes

through a proxy that is able to sanitize sender and/or receiver

information if need be; however, since the sender is the focus

of the problem then the receiver’s identity is kept as is. The

proxy in this case is the only entity that can keep track of

sender and receiver identities. Chaum mixes use a series of

private and public keys whereby the sender trusts a single

entity with its keys to encrypt and decrypt messages and data

before sending information to the receiver. The trusted entity

then relays the sanitized information that can be either

encrypted (or not) to the receiving party.

 Once the receiver (Beta in this case) answers Alpha’s

request and is ready to send back information, it does not

know who and what Alpha is and only sends back information

to the visible entity that sent the request that exited in this case

from Cathy, who in return relays what Beta sent to Alpha.

Chaum mixes started as a good idea with a single trusted

entity to conceal the identity of the sender or the sender and

receiver if need be. However while the aim of this model is to

avoid traffic analysis occurring after traffic is generated by

Alpha, other types of attacks such as timing attacks can be

performed to determine that Alpha is indeed talking to Beta.

This, although may not compromise the integrity of the data,

does not prevent against traffic analysis. Due to timing and

other types of attacks, different chains of Chaum mixes were

added to the network creating “Chained Chaum Mixes”.

Chaum Mixes was a bright idea for hiding and “anonymizing”

the identity of the sender and receiver, however Chaum mixes

where still susceptible to end-to-end attacks on trusted entities

with time based attacks to determine the sender and receiver.

Add to that the overhead of using public and private key

encryption and decryption which had computation overhead

back in the mid-1980s. Although Chaum mixes was lightly

implemented and tested, a new algorithm and methodology

inspired by David Chaum’s algorithm saw the light in 1995

called Onion Routing.

III. TOR

A. Onion Routing to TOR

Onion Routing promised not only to protect the integrity and

confidentiality of data but also against eavesdropping and

traffic analysis over the network and the Internet. Goldschlag,

Reed, and Syverson identified [1], as David Chaum did, that

there are two entities to protect, the data and the identity of

that data. This can be compared to an envelope and the

recipient’s return address written on that envelop whereby the

only entity that must know the information written on the

envelop is the mailman alone. They have also investigated and

considered that the possibility for malicious attackers being

able to eavesdrop at any part in the physical network is

eminent and therefore trusted entities may no longer be trusted

(the mailman cannot be trusted with the recipient and sender’s

addresses). As a result, the authors of the Onion Routing

project devised a way to limit the knowledge of this

information as much as possible while achieving high levels of

anonymity. Onion Routing protects against traffic analysis

attacks mainly because the sender does not talk directly to the

recipient (similar to Chaum Mixes). Instead, it initiates a

connection with an application-specific router called the

“onion routing proxy” that will be able to handle the TCP and

Socks request of that client. Before describing the details of

Tor, it is important to mention that many implementations at

the time were able to achieve anonymity of the sender and

receiver with some drawbacks or at a certain cost for which

these implementations could, to a certain, extent prevent

against traffic analysis. Anonymizer [5], JAP [6], Miximinion

[7], Tarzan [8], and Morphmix [9] are examples of such

solutions offered at the time Tor was being developed.

However, Tor has one more advantage over the other

implementations, the number of clients using Tor, which

provided the project priceless information and test results

since all testing was done on the Internet.

 Tor is the descendent of the Onion Routing project

whereby the project has inherited many of the design concepts

introduced by Onion Routing while improving on many other

concepts and implementations. Tor is a collection of Onion

routers, which have different functions and roles in a network

and during network communication. Each router sends

information in a secure way to the next hop in a Tor network

whereby if any single router in the set of onion routers is

compromised, then this breach will not affect the anonymity

as well the data communication sent to and from the sender

and receiver.

B. TOR: Second Generation Onion Routing

Just like Chaum mixes, Tor aims at hiding the communication

between the initiator and the target host for which the initiator

needs to communicate with, and just like Chaum mixes Tor

utilizes a series of proxies and makes communication travel

through a number of hops before it connects the initiator with

the target. Given the aforementioned one may realize that the

more the number of nodes the more secure a connection

becomes since tracking communication will be difficult from

sender to receiver. Moreover, the more the number of nodes

the more latency is added to the connection; and for low

latency connections such as Secure Shell, Telnet, and other

interactive applications using a high latency connection

becomes impossible to work with. Hence there is a tradeoff

between a secure connection that enables anonymity and that

is able to use a certain number of hops while keeping

connection latency bearable. After plenty of testing and

research Tor was designed to route connections through three

intermediate Tor nodes and a last exit node before leaving the

Tor network and delivering the communication to the receiver.

A total of four nodes are involved in any Tor communication.

While a client is connected to the Tor network using a

specially developed Tor application, data is sent through the

Tor network in an encrypted format with fixed size packets

called “cells”. Cells can fit 498Bytes and are only exchanged

between the Tor nodes and the client using the Tor

application. The recipient is not aware nor does the recipient

participate in the Tor Network. The cells in a Tor network

have a fixed size so that snoopers are not able to detect the

type of communication being transmitted from the sender, as

well as, the response returned back from the Tor nodes.

Therefore, having constant packet size camouflages the type

of data being exchanged. Tor cells could either contain data or

Tor instructions for initiating new circuits or giving

commands to Tor network components for connections and

disconnections as well as exchanging other information.

 Establishing a circuit is simple. After downloading a Tor

application from tor.eff.org website, and doing a checksum on

the application to make sure the application has not been

maliciously tampered with along the way, the user can then

install the application on any OS platform. Upon initializing

the Tor application it starts to look for the first bridge (or first

Tor node) that will link the user’s computer to the Tor

anonymous network; hence, the name bridge. A bridge is just

another Tor node that accepts connections that are listed and

maintained by five Tor management nodes and are secured by

the Tor team. The Tor application contacts one of the five

management nodes it requests a bridge for which a specific

handshake occurs to get connected to the Tor network. Once

connected successfully to the first bridge, the Tor software

talks to the five directory services again whereby the Tor

software contains the addresses and keys of these authorities

and then the client’s software will request three additional Tor

proxies for which a circuit will be built. Even if the first node

is tampered with and cannot be trusted, the Tor model assures

anonymity using a special technique that will be explained as

follows. The concept behind having Tor nodes is to allow each

node to relay cells from and to other Tor nodes, senders, and

recipients without revealing the cell’s content or the complete

route to any of the nodes. This is achieved through cell

encapsulation and multi-level encryption whereby each cell is

encrypted/decrypted at every node and each node can only

reveal a single encrypted layer in a cell. To better explain this,

consider the following example that illustrates complete

communication between a client’s machine first establishing

contact with a Tor bridge and then communicating via Tor

nodes/circuit for downloading a file.

 In Figure 1, step (1) illustrates that a user must be obviously

connected to the Internet in order to establish communication

with the Tor network. In (2) the user’s Tor software

downloads a list of available bridges that are available to start

forming the Tor circuit. Once a bridge has been reached (3), a

special handshake that is unique to Tor occurs and then

client’s Tor software contacts other available Tor nodes, after

securely communicating with the five directory servers, and

sends a request to create circuit cell to all available nodes

listed by the directory servers.

Internet

Tor node

Tor Client

Tor Management and

Directory Nodes

Tor node

Tor node Tor node

Tor node

(1)

(2)

(3)

Figure 1. A user connecting through the Internet to a Tor network.

Internet

Tor node

1st bridge

Tor Client

Tor Management and

Directory Nodes

Tor Exit

node

Tor node Tor node

Tor node

(1)

(2)

(3)

(4)

(5)

(1a)

Figure 2. A Tor Client connecting to a Tor Bridge.

 In Figure 2, after connecting to the bridge and then

consulting with the directory nodes to determine available Tor

nodes, the software randomly selects three other nodes to form

a circuit (or the user can do a selection also). The information

is relayed from the directory nodes to the client’s software in

an encrypted format so that the bridge does not know what

nodes are participating in the circuit. Hence, any Tor node

only knows two segments on the network: the node preceding

it that it accepts cells from, and the node it needs to forward

cells to. It is also important to notice the color of each segment

shown in the diagram as it has been colored for a purpose that

will be explained shortly, but an explanation of how a Tor

circuit is built needs to be shown first. When the Tor client

determines the participating nodes it has chosen, it then needs

to send a “create” cell to each of the nodes without allowing

any of the nodes of the presence of each other. This is done

through encryption and cell encapsulation as follows:

1. Tor client establishes a secure encrypted link with the first

bridge (i.e., first Tor node) using encryption(1) with Cell(1)

the segment for which Cell(1) packets are passing through

are colored in red.

2. In order to establish a full Tor circuit composed of the

bridge and three other nodes, the client software establishes

another connection gradually, through the first bridge, to the

second Tor node in the segment colored in blue. In fact, the

segment colored in blue is composed of Cell(2) using

encryption(2).

3. After a successful initialization using Cell(2) with the

second Tor node, initialization with Tor node number three

is established through the bridge then the second Tor node

in order to insure that communication with all nodes in not

advertised to the public. Moreover, notice that the bridge is

only aware of the existence of the client and the next Tor

node it needs to speak with. However, it is not aware of the

third and fourth Tor nodes. One might question the

networking logic behind this. To make things clear, consider

that all Tor nodes participating in a circuit are actually

packet forwarders (except for the last Tor node), whereby

these nodes are not aware nor do they care about the

destination or shortest path to the destination the client

requires. Tor nodes just relay packets from preceding nodes

to destination nodes they have been instructed to relay to.

4. The circuit is kept on being built incrementally until the last

and fourth node has been reached whereby the latter is

called the exit node. The exit node is the only node capable

of decrypting the content of the encrypted data or request

sent by the client sent through the Tor network. The reason

behind this is because the exit node is responsible for

communicating with the outside world and hence requires

the exact data and destination/request the client needs to

perform on the net. Once the exit node carries out the

request of the client and needs to return an answer, then the

exit node sends the information in an encrypted cell format

that only the client is able to decrypt. Additionally, all the

cells along the way back are not aware of the contents of the

cell which the exit node has sent back to the client.

5. Throughout the above points, the data being sent to nodes

has been referred to as encryption(x) and cell(x) sent to

node(x). Tor utilizes private and public keys where any

entity in the Tor network has both. Of course, when

information needs to be sent to an entity one usually

encrypts data with the public key of the second party so that

the second party is the only entity capable of decrypting the

data. Tor works exactly the same way the colors presented

in the last diagram are now going to be explained. When the

client needs to establish a secure link with the bridge, it

sends a cell(1) to node(1) using public/private key

encryption methodology. Hence, any cell sent between the

client and the first Tor node is encrypted. During the

process of establishing a Tor circuit, create cells sent to the

participating Tor nodes are also encrypted and relayed

through already establish Tor nodes as in Figure 3:

Figure 3. Client sending and receiving cells to Tor bridge node.

 Communication is then established with the bridge, now the

client needs to establish a connection with the second Tor

node through the newly established connection with the

bridge. The client acquires the public key of the second Tor

node and then designs a cell in the shape of an onion. The

inner part of the cell contains information encrypted with

the public key of node 2 and the outer layer is encrypted

with the public key of the bridge. Once the bridge receives

this cell it will peal (decrypt) the outer layer and then will

pass the remainder of the still encrypted cell to Tor node

number 2 as illustrated in Figure 4.

Figure 4. First stages of encapsulated cells between nodes in Tor.

 A circuit composed of four nodes hence has four different

types of cells which are encapsulated in each other and only

a single node understands one layer of this encapsulation

(i.e., can decrypt and understand the content of the cell).

When a circuit is formed it is the duty of the Tor client

software to design the encapsulated cells hence called

onions before sending them to the circuit. All data

pertaining to the identity of the client are stripped from the

cells and therefore the client becomes anonymous whereby

the bridge is the only entity that knows of the client’s

existence (not even the exit node). Similarly, it is also the

duty of the exit node to encapsulate and design an onion cell

that can be reversely decrypted on the way back as an

answer to the client’s request(s). Data in an onion or

encapsulated cell is illustrated in Figure 5.

Figure 5. A sample of multiple encapsulated cells in a Tor network.

 The network path for the onion in Figure 5 that is passing

through the Tor circuit via the Tor nodes is now represented

in Figure 6.

INTERNET

First Node

(bridge)Client
Cell(1)

Single direction

Second Tor

 Node
Cell(2)

Single direction

Third Tor Node

Cell(1)

Cell(2)

Cell(3)

Cell(3)

Fourth Tor

Node
Cell(4) Cell(4)

Original network data

packets sent to final

destination

S
in

g
le

 d
ir
e

ct
io

n

Single directionBidirectional traffic

Figure 6. A representation of the path of an encapsulated cell in a Tor tunnel.

 When the network packets originating from the client are

sent through the fourth node they are no longer encrypted,

as the fourth node has removed the last layer of encryption

from the onion. Of course this means that the data is

revealed; however, the identity (IP headers) of the client is

not revealed since the client has stripped out this

information before sending the data to the first node. The

receiving entity will now be contacted by the fourth node,

hence hiding the identity of the client, and the data sent back

to the client will traverse backwards along the same path

data has come from. Of course this means that the fourth

Cell(1)

Cell(2)

Cell(3)

Original network data

packet

Cell(4)

node has to prepare the same encapsulated set of layers in

an onion similar to the one the client has prepared earlier

using the reverse order of layers originally sent by the

client. When data reaches its final destination, only the

client is able to decrypt and view the data. Hence, in any

Tor communication, only the bridge knows of the existence

of the client in a circuit and only the exit node is able to

reveal the data but not the identity of the client.

C. Tor Features

Tor has many features that make it attractive. These features

include:

 Ease of Use through Socks Proxy

 Tor has been built in a way that allows users of different

backgrounds to use Tor easily and anonymously. Tor also

relies on applications with socks proxy features in order to

redirect any application’s traffic through a single tunnel to

the anonymous Tor network. This allows all applications to

benefit from encryption standards Tor is using. Moreover,

all desktop applications are unaware of the stages of Tor and

how data is encrypted/decrypted or even how cells are

formed. Once a user sets his/her application to the Tor socks

proxy settings, then the Tor engine is installed.

 Open Design

 Tor has an open design whereby the design and the source

code are both provided freely to the public. Tor developers

are volunteers that code, design, suggest, and donate with

the will to enhance the Tor service and anonymity on the

Internet. While this might be discouraging to some people;

however, the majority of open source projects have proved

to be successful in many cases for which Tor is no

exception.

 Free Participation

 Since Tor is an anonymous service, there are no payments

or dues set for its users. Whether you are sitting at home,

work, or in a place where you would feel the need to be

accessing the Internet anonymously then, Tor is able to

provide that. Additionally, Tor welcomes any entity or

organization to enhance the Tor service by either relaying

traffic through their own workstations as they are connected

to the Tor network, or by deploying a high performance and

dedicated Tor server so that a larger number of users are

able to connect and use this node.

 Protection against Strong and Weak Attacks

 The designers of Tor admit that the anonymous network

does not prevent against global adversaries that have

exclusive network/resource access and are capable of

monitoring traffic on all networks their users are connected

to. However, Tor promises protection against strong and

weak attacks from individuals and other entities with

malicious attack techniques carried out on non-technical and

sometimes unprotected end users. Consequently, preventing

against traffic analysis and assuring the integrity and

confidentiality of data being transmitted over the Internet

for and by users and therefore hiding the identity of

recipients and senders is at the moment the concern of the

Tor project. Many types of attacks have been carried out on

Tor since it was introduced like Basic Traffic Analysis, Path

Confirmation attack, Insertion attack, Predecessor attack,

Backtrack attack [10].

D. Critique

Tor is a unique anonymous design has that the following

advantages:

 Protects against Strong and Weak Attackers

 Many research papers have shown that Tor can protect users

for different types of attacks based on the Tor design as well

as the encryption techniques used when nodes are

communicating. Hence, a certain level of security has been

devised and that makes Tor, not only an anonymous system,

but a relatively secure system too.

 Protecting the Rights and Anonymity of Sensitive

Published Content

 In places where freedom of speech is prohibited and

communication is monitored by different entities and

agencies Tor excels and becomes the communication

software client of choice when transmitting data from and to

other peers around the world.

 The More the Number of Tor Nodes the More

Anonymity Added

 Similar to any graph model, the more the number of vertices

the more the number of edges needed to create different

interconnections. Hence, the more the number of Tor server

nodes participating in a Tor network, and the more the

number of Tor users relaying Tor traffic (through Tor

clients), then the more the possible number of circuits that

can be established and can therefore pass information

securely along Tor paths.

 Tor Builds Anonymous Paths for the Client Based on a

List of Bridge Nodes

 When a client is requesting to establish a circuit, then an

encrypted list of all available bridges is downloaded from

one of the five management nodes and then decrypted at the

client level in order to establish the first hop onto the Tor

circuit. Once the first hop is established with the bridge, the

next Tor nodes are contacted gradually hence adding even

more security to establishing circuits as opposed to

contacting circuits individually.

On the other hand, Tor has several disadvantages. These are:

 Directory Information Servers Can Be Blocked

 The directory information servers keep track of all

participating Tor nodes, as well as, the bridges users are

allowed to connect to. Moreover, the lists of participating

Tor nodes that have been found reliable and participating

frequently are usually posted on the Tor website. Hence, if

any authority wishing to stop the usage of Tor by its users,

then the lists of all available Tor servers as well as the

directory servers are readily available to be simply blocked

by the firewall of that organization.

 Blocking Based on Fingerprinting Tor’s Connection

 One can bypass the scenario in the first point by simply

using an externally located HTTP proxy server for browsing

the Tor website and getting the list of available Tor nodes’

IPs. Even if that is successfully done, unfortunately, the

handshake executed to establish a connection between users

and Tor nodes/bridges is clear to authorities as Tor

designers have followed RFCs while developing Tor.

Hence, any intelligent firewall device is able to detect Tor’s

handshake or signature and, therefore, block it from passing

from and to its internal network.

 All Tor Traffic is Pushed Through Port 9001 TCP Can

Not Only Be Blocked But Also Detected

 The ability to use Tor relies on socks proxy features found

in applications, and while there are many applications that

already have this feature implemented; many other

applications/services do not. An example is a DNS request

that requires the client to resolve against any DNS server

outside the Tor network. In this scenario consider a user

requesting to visit a website like google.com, once the user

enters the domain in his/her browser, a DNS request will be

sent to the user’s ISP to perform a domain name lookup and

resolve that domain name to an IP. This exact process is not

anonymous and insecure and hence allows any snooper to

perform time-attacks and learn that the user is at this point

in time generating traffic and accessing google.com. To

some applications that rely on DNS and do not support

socks proxy makes Tor useless in some scenarios or where

end-to-end attacks are possible. Therefore, Tor cannot

prevent against end-to-end attacks.

 Single Path for a Data Stream Moving Inside a Circuit

 When a Tor circuit is formed, the complete data stream

generated by or to the client passes through a single data

stream throughout that circuit. Many studies have shown

that even though there are encrypted connections coming

and going through a single tunnel, saving the traffic for later

analysis may reveal the identity of sender’s and receivers.

Making the encryption more complex is time consuming

when it comes to computation. Hence Tor does not make

use of its distributed nodes and passes traffic only through a

single circuit until the circuit is destroyed.

 Slow Performance
 Due to most users being end users with asymmetric

connections like DSL/ADSL with limited traffic, makes

users prefer choosing high bandwidth dedicated Tor nodes

instead of user’s who have chosen to become Tor relayers

with poorer bandwidth connections. This in turn not only

lessens anonymity but also adds more load on Tor dedicated

nodes, as well as, security risks and reliability. An attacker

may simply deploy a large number of dedicated Tor servers;

thus, users would willingly join these servers and risk

therefore traffic analysis being carried out on their

connections.

 Success or Failure in Data Integrity Checks

 This may render a circuit useless an attacker with enough

skill can cause serious degradation in Tor’s communication

experience through two scenarios for which one was proven

successful by Keven Bauer [11].

 Website Fingerprinting and Backtrack Attack

 This is due to lack of packet camouflaging, delay, and

reordering [12][13].

IV. CONCLUSION

This paper presented the Tor anonymous system and its

corresponding details that have made such a system a success.

Avoiding traffic analysis, and hiding the identities of users, is

the aim of any anonymous system. However, since most

anonymous systems rely on aging encryption technologies for

which global adversaries are a capable of compromising, then

the integrity of data might be at stake.

 One of the key elements that worry anonymous systems

researchers is QoS for the bandwidth utilized by peers on the

systems and the overall network performance [14]. Although

this has been slightly commented on, more research in QoS

and a Bandwidth-choking approach is required while

concentrating on security and functionality implications.

REERENCES

[1] S. Syverson, D. Goldschlog, and M. Reeds, “Anonymous connections

and onion routing,” Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, USA, pp. 482-494, 1997.

[2] B. Choi, D. Xuan, C. Li, R. Bettati, and W. Zhao, “Efficient traffic

camouflaging in mission-critical QoS guaranteed networks,”
Proceedings of the IEEE Information Assurance and Security

Workshop, West Point, Virginia, USA, pp. 143-149, 2000.

[3] R. Dingeldine, “Tor: the second-generation onion router,” Proceedings
of the 13th Usenix Security Symposium, San Diego, USA, 2004.

[4] D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Communications of the ACM, 24(2), pp. 84-88, 1981.
[5] How anonymizers work. Retrieved on April 4, 2014 from

http://www.livinginternet.com/i/is_anon_work.htm.

[6] JAP anonymity and privacy. Retrieved on April 4, 2014 from
http://jap.inf.tu-dresden.de/index_en.html.

[7] G. Danezis, R. Dingeldine, and N. Mathewson, “Mixminion: design of a

type III anonymous remailer protocol,” Proceedings of the 2003 IEEE
Symposium on Security and Privacy, Berkeley, USA, pp. 2-13, 2003.

[8] M. Freedman, S. Sit, J. Cates and R. Morris, “Introducing Tarzan, a

peer-to-peer anonymizing network layer,” Proceedings of the First
International Workshop on Peer-to-Peer Systems - IPTPS, Cambridge,

MA, USA, 2002.

[9] M. Rennhard and B. Plattner, “Introducing MorphMix: peer-to-peer
based anonymous internet usage with collusion detection,” Proceedings

of the ACM Workshop on Privacy in the Electronic Society,

Washington, USA, pp. 91-102, 2002.
 [10] P. Syvneron, G. Tsudik, M. Reed, and C. Landwehr, “Towards analysis

of onion routing security,” in H. Federrath, editor, Designing Privacy

Enhancing Technologies: Workshop on Design Issue in Anonymity and
Unobservability, pp. 96–114, Springer-Verlag, LNCS, 2009.

[11] K. Bauer, D. McCoy, D. Grunwald, S. Douglas, and K. Tadayoshi,

“Low resource, routing attacks against anonymous systems,” Technical
Report CU-CS-1025-07, University of Colorado, USA, 2007.

[12] A. Hints, “Fingerprinting websites using traffic analysis,” in R.

Dingledine and P. Syverson, editors, Privacy Enhancing Technologies
(PET 2002), pp. 171–178. Springer-Verlag, LNCS 2482, 2002.

[13] B. Zantout and R. Haraty, “I2P data communication system,”

Proceedings of the Tenth International Conference on Networks, pp.
401-409, 2011.

[14] B. Zantout and R. Haraty, “A comparative study of BitTorrent and

NetCamo data communication systems,” International Journal of

Computational Intelligence and Information Security, volume 1,

number 2, March 2010.

