

978-1-4799-5350-9/14/$31.00 ©2014 IEEE

A Matrix-based Damage Assessment and
Recovery Algorithm

Ramzi A. Haraty and Mirna Zbib
Department of Computer Science and Mathematics

Lebanese American University

Beirut, Lebanon

Email: rharaty@lau.edu.lb

Abstract--With the advancement of Internet

technology, securing information systems from electronic

attacks has become a significant concern. With all the

preventive methods, malicious users still find new ways to

overcome the system security and access and modify

sensitive information. To make the process of damage

assessment and recovery fast and effective (not scanning

the entire log), researchers have proposed different

methods for segmenting the log file, and accordingly

presented different damage assessment and recovery

algorithms. In this work we present efficient damage

assessment and recovery algorithms to recover from

malicious transactions in a database based on the concept

of the matrix. We also compare the various approaches

and present the performance results.

Keywords--damage assessment; recovery; malicious

transactions; transaction dependency; and data

dependency.

I. INTRODUCITON

Information warfare as described by Libicki and Fellow [1]

is similar to discovering the nature of an elephant by a blind

person. It refers to one of the most effective weapons that have

been and are being used in today’s wars [2]. Warfare started

with the Agrarian revolution and then passed by the industrial

revolution to reach what we call nowadays ‘information

warfare’ [3].

For the purpose of this work, information warfare is the set

of techniques taken to gain access to the information of an

adversary while defending your own information. Some of the

weapons that can be used in such a war are: logic bombs,

computer viruses, information collection, information

manipulation, information degradation and denial of service

[4-6]. To be able to defend data, and to be able to exploit the

data of others, one should have a full understanding of how

things work.

During the past two decades, Internet usage has been

increasing rapidly. This increase has always been

accompanied by information sharing, which is a key element

for the success and productivity of an organization. The

importance of this process is to preserve the reliability of

information. Securing information is made on three levels:

prevention, detection and recovery. Prevention might fail and

detection might be late, in this case some data might be

corrupted. Detection can be split into two categories: the

statistical models and the misuse detection [7]. It is assumed

that an intruder’s behavior is noticeably different from that of

a normal user, and statistical models are used to aggregate the

user’s behavior and distinguish an attacker from a normal

user. The aim, after this corruption and after detecting that

something malicious has occurred, is to remove and clean the

corruption and its consequences.

Prevention, detection and recovery are three important

phases in any “live” system. Malicious users manage to

overcome preventative security measures and systems. None

of the detection systems ensure that an attack will be

immediately detected. Hence, damage could spread affecting

other “clean” transactions as well.

The complexity and efficiency of the recovery process is

our main interest in this work. In some cases the adversary’s

intentions are not only to insert malicious transactions but also

to cause denial of service. Sometimes the size of the log file

might increase tremendously before discovering that an attack

has occurred. Thus, this will require more time to assess and

recover from the malicious transaction and its effects. This

increase in recovery time would lead to denial of service. We

are interested in finding an algorithm that prevents such

drawbacks or at least one that reduces them. One of the

important issues that should also be addressed is what

information should be saved in the log file as we prevent

excess I/O. For this purpose, researchers have proposed using

auxiliary structures for keeping track of dependencies [8-9].

In this paper we, present a damage assessment and

recovery algorithm that keeps a matrix along with the logging

process. This matrix saves the dependency between

transactions and data items. During the recovery process all

the needed information will be retrieved from the matrix. The

aim of this work is to ensure speedy and efficient recovery. It

requires only scanning part of the matrix to be able to discover

the dependency rather than scanning the entire log file. In

addition, the use of bits in our algorithm requires less

processing. Dependency of transactions is saved in only one

matrix, which requires less computational time and space. No

logical operations and no graphs are used in this model as is

the case with other approaches. All of this contributes to

making our approach more efficient than previously proposed

algorithms.

II. LITERATURE REVIEW

When dealing with electronic data and transactions, it is

hard to identify which user is malicious and which is

authenticated. The system treats all the users the same and

accepts their transactions. For example in [10], every user is

considered a malicious user and his transactions will not take

actual action in the database until a certain period of time

elapses. After this, the behavior can be classified as either

malicious or non-malicious. Accordingly, and based on this

behavior, transactions can be committed or aborted.

As soon as an attack is detected by an intrusion detection

system, it should be directly recovered. All transactions from

the point of the attack and onwards should be assessed

whether they are affected or not. Two approaches exist for

assessing the malicious transaction effects: transactional

dependency [11] and data dependency [12]. Transactional

dependency stores all dependent transactions on one another

in one segment. So the log is divided into multiple segments.

In Panda and Haque used the data dependency approach where

each segment stores only dependent operations. Therefore, a

transaction’s operations may be stored in different segments.

Each read/write operation in the transaction has a block

number; this number shows dependency between operations.

The authors suggest the use of a directed damage

demonstration graph, which only presents the affected data

items. The disadvantage of this algorithm is that it is limited to

data dependency. Panda and Gordano in [13] proposed two

data dependency algorithms; the difference between them is

that in the first the damage assessment and recovery

algorithms are performed simultaneously; whereas, in the

second each one is performed separately. This difference

implies different behaviors at the algorithm level as well. For

example, when both damage assessment and recovery are

done simultaneously, the system will have to go through

denial of service for a longer period of time in order to recover

completely. In both approaches the damage assessment works

using directed graphs, where the nodes represent data items.

When the intrusion detection system reports the occurrence of

a malicious transaction, a node for each data item will be

created. This graph helps in mapping how the damage has

spread.

The authors in [14] suggested segmenting the log files so

the work would only be done on the part of the log that is

affected. Operations are clustered according to their

dependency where each cluster contains dependent operations.

This clustering is done in a periodic way for the active

transactions. Every operation will be stored in only one

cluster, but a transaction can belong to more than one cluster.

However, deleted transactions cannot be retrieved, so

maliciously deleted transactions might be skipped.

Traditional methods suggest scanning the log file from the

point of the attack until the end of the file to undo and redo the

affected transactions. Panda in [15] suggested a method which

is fusing the malicious transactions to reduce the I/O time. The

aim of this method is to minimize the time to insure best

results without getting any other consequences.

Panda and Tripathy [16] suggested the use of ‘Coldstar’

semantics in their algorithms where the database becomes

unavailable for new transactions. They also present an

algorithm using the ‘Warmstart’ semantics where the database

use continues with some services but stops with others.

In [17], the authors suggested segmenting log files into

clusters. However, the size of the dependent transactions

cannot be controlled; and hence, the clusters may grow in size.

This imposes a weakness in the model, since two dependent

transactions may belong to two different clusters because of

size limitation. Hence, more work will be needed. To solve

this problem, Haraty and Zeitunlian [8] proposed the use of

clusters and sub clusters. Data inside a cluster are records that

have some data dependency, whereas data in the same sub

cluster could be there for one of the following two reasons:

number of data items or space occupied. Zhou, Panda and Hu

[18] proposed a similar model for distributed databases. The

proposed model works on transaction dependency in order to

recover from malicious attacks. This work extends the work of

Zhou and Panda [19] and requires additional structures to

recover when working on distributed databases.

Xie, Zhou, Feng and Hu [20] suggested the use of a

before-image (BI) table to keep track of all deleted

transactions and to help in analyzing potential reads. The BI is

a data object created in the database. BI tables are tables that

are not accessible by users and have the same structure as the

original tables, except that they do not have any constraints.

To avoid the problem of data redundancy, Xie suggested using

a time window to delete data items and restrict the size of the

BI tables.

Chakraborty, Majumdar and Sural [9] presented a column-

dependency approach. The advantage of this approach is that

it takes less time than the traditional approach to recover from

an attack. This approach has showed that the percentage of

inconsistencies after re-execution increases with the increase

of malicious transactions.

The use of a Local Damage Assessment and Recovery

(DAR) Manager and a Local DAR Executer on each site was

suggested by Liu and Yu [21]. The Local DAR Executer starts

by identifying all affected sub-transactions and continues to

clean them. The algorithm requires global coordination

between different sites. The algorithm starts by identifying the

bad transactions and then sending them to the Local DAR

Manager for cleansing.

Lala and Panda [22] suggested clustering the transactions

so there is no need to search transactions that have no effect.

In this model, an additional column was added to each of the

matrices that contains the cluster ID to which this transaction

belongs. In such a method, the cluster may contain

transactions more than just what is directly related. In

addition, the cluster size must be manageable or else the

cluster may contain all the transactions. Yet, if the cluster size

is limited, then some related transactions might be in different

clusters. Thus, all of the clusters need to be checked.

Fu et al. [23] proposed the Fine Grained Transaction Log

(FGTL). The disadvantage of this method is that the

association degree of the transaction and the FGTL are

inversely proportional. Hence, even though the integrity of the

log file will be preserved; however, the services will face a

major degradation.

Ray et al. [24] performed analysis on existing algorithms

along with a suggestion of new techniques. The complexity

analysis was performed to check the complexity of the

proposed algorithm in [1] as well as the algorithm suggested

in [22]. The aim of this paper was to reduce the damage

assessment latency so damage spreading will not occur. The

disadvantage found in [1] was that the log file of this

algorithm is huge; and therefore, it will take time to scan the

part of the log after the malicious transaction. As for the

algorithm proposed in [22], it showed a worst-case running

time of O(vlogv + s), where v represents the number of

affected transactions and s represents the sum of sizes of the

transaction records.

Lomet et al [25] dealt with the problem of bad user

transactions that result in invalid data. Their method identifies

the initial invalid data and all subsequent data that depends on

it. Only transactions writing invalid data need to have their

effects “de-committed”. The authors identified this closure of

invalid data, via logging data reads. Their method then

removes only the effects of invalid transactions.

III. THE PROPOSED APPROACH

The trigger for our proposed algorithm is the set of

malicious transactions that it will receive from an intrusion

detection system (IDS). Our algorithm is responsible of

assessing the committed transactions and consequently

classifying them into clean or affected transactions; then it

deletes the malicious transactions and recovers the affected

ones.

In our approach, we assume we have a rigorous

serializable history, as serializability theory provides

correctness [26]. A sequential log file is also maintained in

which only committed transactions are saved. This log file

cannot be accessed by any users at any time and it will be used

during the recovery process. Our approach requires the use of

check points [27].

The check point is a database event used in order to ensure

faster detection and recovery process. Check points are

committed after an agreed upon time interval after which we

suspect that malicious transactions have either been detected

or that the committed data is clean (or else the IDS would

have detected the set of malicious transactions). The chosen

time interval should not be too long so that the log file will not

tremendously grow in size, yet long enough so that we will not

have to go to previous check points to recover. Check points

are beneficial in our proposed algorithm to reduce the space

and reading time.

After a check point has been reached (i.e., after the agreed

upon time elapses), the dependency matrix will be purged. The

dependency matrix will be purged at each check point as we

assume that the probability of having a malicious transaction

became very low. Still, if a malicious transaction was detected

that occurred before the check point (worst case scenario), the

log file will be used to rebuild the dependency matrix and then

go through the same process as if no check point has occurred.

The rebuilt dependency matrix will have the same

characteristics as the dependency matrix that was built before

the check point. The matrix will only save the committed

transactions. The importance of the dependency matrix is in

the detection process. It will be used to discover the

dependency among transactions; and hence, classify them into

affected or clean transactions. Panda and Zhou in [11] used

more than one matrix and applied logical operations between

these matrices to discover dependencies. However, in our

model only one matrix is used and it shows the dependencies

without any logical operations. Complementary arrays are

constructed in special cases as explained below.

As the transactions are being executed, and after their

commitment they will be added to the two-dimensional

matrix. Thus, building the dependency matrix. Columns of the

matrix correspond to the data items present in the database,

whereas the rows represent the different committed

transactions. For every transaction, each data item will have a

value depending on the operations that the transaction has

gone through, which is represented as follows:

 0: if the data item is unmodified by a transaction.

 1: if the data item is blindly written by a transaction; data

from previous transactions is not needed.

 A positive transaction ID: if dataitem1 that is accessed by

Tx, is identified in the matrix with entry Ty such that y < x;

this would mean that dataitem1 is updated according to the

last modified value of dataitem1 by transaction Ty.

 A negative transaction ID: this means that this data item

was modified based on data items read from different

transactions.

Consider a transaction Tx. To modify dataitem1, Tx needs

to read dataitem4 of transaction Ty, dataitem3 of transaction

Tw, and dataitem1 from transaction Tv, where y, w and v < x.

In this case, the entry in the matrix for that data item will be -

Tx. Still, -Tx alone will not help us in the recovery process as it

does not show which transactions have affected it. To solve

this problem, we added a complementary array that will only

be manipulated in such cases. That is, in our example, the

entry of the main matrix for dataitem1 in transaction Tx will

have -Tx. Then, in the second array, the index will be the

transaction ID that has been affected by other transactions, Tx.

The index Tx will be pointing to Ty, Tw and Tv. This is

depicted in figures 1 and 2.

 1 2 3 …. 30

Tv 1 0 0 1

Tw 0 1 0 0

….

Ty 0 0 0 1

Tx -Tx 0 0 0

Fig. 1 The dependency matrix.

Fig. 2 The complementary array.

A. The Damage Assessment Algorithm

Our proposed algorithm uses two array structures: the

dependency matrix and the complementary array. The former

stores dependencies between transactions. The latter saves the

affected transactions that our algorithm will detect. The

previously discussed structures along with the set of malicious

transactions, provided by the IDS, are the main elements for

our proposed detection algorithm. One of the characteristics of

the log file and the matrix is that both are sequential.

Transactions in both the log file and the dependency matrix

are stored according to their commitment and such that there

is no transaction Tj where j < i and Tj depends on Ti.

Whenever recovery is required, our detection algorithm

identifies the minimum transaction ID among the set of

malicious transactions TMi. When the detection begins, the

algorithm skips every entry before the TMi since they are not

affected by any transaction in the set of malicious transactions.

The TMi will be skipped as well since we already know that

this is the malicious transaction, it needs to be deleted. This

way, the algorithm will be reducing the effort that could be

used on transactions that we know are clean.

After the row TMi, the matrix will be traversed row by row and

for each data item in that transaction (row), a check will be

done to see how the data have been affected. If the entry is a

‘0’ or ‘1’, then this means that this data item have not been

modified in this transaction or that it is blindly written. Hence,

our algorithm will skip that column as the data item is written

cleanly and checks the following columns.

On the other hand, positive and negative transaction IDs

show a possibility that the transaction might be affected. If the

entry contains a positive transaction ID, which means that the

data item of this current transaction is dependent on the

transaction, with the transaction ID present in that entry. To

illustrate this, we consider the following case: upon searching

the matrix reaching transaction Ti, and upon checking if this

transaction is affected, we check each data item in the matrix.

We consider the case where for that row, data item x have the

following ID, Tj. This shows that to write data item x in

transaction Ti the transaction read data from Tj. Hence, we

search among the set of malicious transactions to check if Tj

belong to it, if it does then we add Ti to the set of affected

transaction. Then, our algorithm will not continue searching

the other data items and skip to the next transaction following

Ti. If Tj does not belong to the set of malicious transactions,

we check if it belongs to the set of affected transactions. If Tj

belongs to the set of affected transactions then we have

indirect dependency and Ti should be added to the affected

transactions. The algorithm checks the other data items for

that transaction. The best case scenario is when the first data

item in that row is affected. Hence, the transaction would be

added to the set of affected transaction and the other data

items will be skipped.

The last case is having a negative transaction ID. This

shows that the transaction we are currently looking at has been

affected by more than one previously committed transaction.

In this case, we will directly allocate the index of this

transaction in the complimentary array to retrieve the content

corresponding to the entry that we are currently checking.

Consequently, the retrieved content will then be tested to

check if any of this content has the same ID as any of the

transaction IDs that are classified as malicious or affected

transactions. Similarly, the steps done in this case are the same

as in the previous case; i.e., if a malicious or affected

transaction was among the transactions that this row

(transaction) depends on, then we will add it to the affected set

and skip to the next row. The damage assessment algorithm is

summarized in figure 3.

Receive the set of malicious transactions

Select the minimum transaction ID among the malicious transactions

For every transaction in the matrix starting from the minimum malicious ID to
the end of the matrix

 For each data item

 If (entry == 0) then
 Move to the next row

 Else if (entry == 1) then

 Move to the next row
 Else if (entry < 0 && entry belong malicious transactions)

 Add the current transaction to the set of affected transactions

 Move to the next row
 Else if (entry > 0 && entry does not belong malicious transactions)

 For every transaction in the affected transactions set

 If (entry == Taffected)
 Add entry to affected transactions set

 Move to the next row

 Else if (entry < 0)
 Search ComplementaryArray for key == entry

 Tx

Ty Tw Tv

 For each element in ComplementaryArray [entry]
 If(element belongs to malicious transactions)

 Add the current transaction to the set of affected transactions

 Move to the next row
 Else if(element belong to the set of affected transactions)

 Add the current transaction to the set of affected transactions

 Move to the next row
Fig. 3 The damage assessment algorithm.

B. The Recovery Algorithm

After the completion of the damage assessment algorithm,

the recovery algorithm will be triggered by receiving the set of

malicious and affected transactions. The malicious

transactions will be deleted, while the affected transactions

will be recovered to act as if no malicious transactions have

occurred. The algorithm will run until we reach a stable state

in the database - a state where all of the data is consistent (i.e.,

no malicious transaction exits and any affected transactions

are recovered). The sets of malicious and affected transactions

will be traversed and for each transaction we will go back and

check what information the log file has about it in order to do

the proper update. The algorithm is illustrated in figure 4.

Receive the sets of malicious and affected transactions

Read the file into an array

For each transaction in the affected transaction set
 Retrieve the log file information for that transaction

 Update the database accordingly

For each transaction in the malicious transaction set
 Retrieve the log file information for that transaction

 Delete the transaction

Fig. 4 The recovery algorithm.

C. An Example

Consider a database for a company that contains

information about the following: Employee, Customer,

Category, Product and Order. Also, consider the following

insert transactions:

T1 = Employee (‘1’, ‘Kim’, ‘Stewart’, ‘1980-11-02’,’Sales’,

‘$2000’); [for employee ID, first name, last name, date of

birth, job, salary]

T2 = Category (‘1’, ‘Beverages’); [for category ID, category

name]

T3 = Product (‘1’, ‘Pepsi’, ‘$1’, ‘1’); [for product ID, product

name, price, category ID]

T4 = Customer (‘1’, ‘X’, ‘Beirut’); [for customer ID, customer

name, address]

T5 = Order (‘1’, ‘1’, ‘1’, ‘1’, ‘300’, ‘$300’, ‘2012-12-01’); [for

order ID, customer ID, employee ID, product ID, quantity,

total, date]

Let the dependency matrix that corresponds to this

database be called M. This matrix, which is depicted in figure

5, is composed of 22 columns (i.e., EID, FName, LName,

EDOB, EJ, ESalary, CID, CName, CAddress, CatID,

CatName, PID, PName, PP, CatID, OID, CID, EID, PID, QO,

TO and date). As transaction T1, commits, a new entry in M

will be created with the following attributes M[1][] = {1, 1, 1,

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. The first six

columns will have entries of ‘1’ because they are blindly

written by transaction T1. The rest of the columns will be ‘0’

because they were left unmodified. Unlike transaction T3

which depends on previously committed transactions. Each

product belongs to a category and in this case product ‘1’

belongs to the category that was previously committed in

transaction T2. T3 writes the first three attributes without

looking at anything that was previously written, but the fourth

attribute needs to look at the previous transaction. Therefore,

the row for T3 will be M[3][] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

1, 1, -T3, 0, 0, 0, 0, 0, 0, 0}. Transaction T5 depends on

transactions T1, T3 and T4. The row corresponding to T5 is

represented as follows: M[5][] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1,-T5, -T5, -T5, 1, -T5, 1}. OID, QO and date were

blindly written by T5, unlike CID, EID, PID, and TO that

needed an additional complementary structure. The OID, QO

and date columns in transaction T5 will be represented by ‘1’.

To manipulate M[5][16], we need the complementary

structure to save the transaction that helped in getting the

value of this field. Since T5 was for customer ‘X’ then this

shows that there is dependency between transactions T5 and

T4. Similarly, we will retrieve and save the dependency related

to M[5][17] and M[5][18] ensuring not to repeat dependent

transactions. Hence, this dependency will be reflected in

Comp[T5] = {T4, T1, T3}, which is depicted in figure 6.

 EI

D

FN

am
e

LN

am
e

ED

O
B

EJ ES

ala
ry

CI

D

C

Na
me

C

Ad
dre

ss

Ca

tID

Ca

tN
am

e

PI

D

PN

am
e

PP Ca

tID

OI

D

CI

D

EI

D

PI

D

Q

O

TO Da

te

T1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

T3 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -T3 0 0 0 0 0 0 0

T4 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

T5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -T5 -T5 -T5 1 -T5 1

Fig. 5 The dependency matrix M.

Fig. 6 The complementary array.

Consider the case were the intrusion detection system will

provide our model with ID T2. Hence, the algorithm will start

searching the matrix starting from T3 rather than starting from

T1. It will check every column in T3 and skip every column

that contains a ‘0’ or ‘1’. Since the CatID column contains a

negative ID, we will search the complementary array for T3.

T3 T5

 T2 T4 T1 T3

The complementary array points to T2 which is malicious (see

figure 6); hence, T3 will be added to the affected transactions

set and we will skip to T4. The same thing will be repeated

until the end of the matrix. The set of malicious and affected

transactions will subsequently be sent to the recovery

algorithm. During recovery, T2 will be deleted since it is

malicious and the set of affected transactions will be updated.

IV. CONCLUSION

In this paper, we presented a new approach for recovery

that depends on matrices. The dependency between

transactions is saved in a matrix that will be formed as

transactions are being committed. We tested our model and

compared it with different approaches. The comparison results

confirm that our approach is faster and more efficient than

previously proposed models (traditional, traditional clustering,

hybrid clustering according to data dependency and according

to fixed size). As for future work, we will consider the space

issue. Our algorithm requires the presence of a matrix along

with a complimentary structure to save transactions it depends

on; this requires space that could be diminished.

REFERENCES

[1] Libicki, M., & Fellow, S. (1995). What is information Warfare? United

States: United States Government Printing.
[2] Hutchinsn, W. (2006). Information warfare and deception. Information

Science, 9, 213 - 223.

[3] Haeni, R. (1997). Information warfare an introduction. Washington DC:
The George Washington University.

[4] Kim, T., Wang, X., Zeldovich, N., & Kaashoek, M. (2010). Intrusion

recovery using selective re-execution. Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI

'10). 89-104.

[5] Megan B. (1999). Information warfare: What and how? Carnegie Mellon
School of Computer Science. Retrieved from

http://www.cs.cmu.edu/~burnsm/InfoWarfare.html.
[6] Haraty, R. A. (1999). C2 secure database management systems - a

comparative study. Proceedings of the 1999 Symposium on Applied

Computing, 216-220.
[7] Ning, P., & Jajodia S. (2004). Intrusion detection techniques. The Internet

Encyclopedia, 2, 355 - 368.

[8] Haraty, R., & Zeitunlian, A. (2007). Damage assessment and recovery
from malicious transactions using data dependency for defensive

information warfare. ISESCO Science and Technology Vision, 3(4), 43

– 50.
[9] Chakraborty, A., Majumdar, A., & Sural, S. (2010). A column dependency

based approach for static and dynamic recovery of databases from

malicious transactions. International Journal of Information Security
(ACM), 9(1), 51 - 67.

[10] Hua, D., Xiaolin, Q., Guineng, Z., & Ziyue, L. (2011). SQRM: An

effective solution to suspicious users in database. DBKDA 2011: The
Third International Conference on Advances in Databases, Knowledge,

and Data Applications, St. Maarten, The Netherlands Antilles.

[11] Panda, B., & Zhou, J. (2003). Database damage assessment using a
matrix based approach: An intrusion response system. Proceedings of

the 7th International Database Engineering and Applications

Symposium (IDEAS 2003), 336 – 341.
[12] Panda, B., & Haque, K.A. (2002). Extended data dependency approach:

A robust way of rebuilding database. Proceedings of the 2002 ACM

Symposium on Applied Computing, 445 – 452.
[13] Panda, B., & Gordano, J. (1998). Reconstructing the database after

electronic attacks. Proceedings of the IFIP TC11 WG 11.3 Twelfth

International Working Conference on Database Security XII: Status and
Prospects.

[14] Ammann, P., Jajodia, S., & Liu , P. (2002). Recovery from malicious
transactions. IEEE Transactions on Knowledge and Data Engineering,

14(5), 1167–1185.

[15] Panda, B., & Yalamanchili, R. (2001). Transaction fusion in the wake of
information Warfare. Proceedings of the 2000 ACM Symposium on

Applied Computing, 242– 247.

[16] Panda, B., & Tripathy, S. (2000). Data dependency based logging for
defensive information warfare. Proceedings of the 2000 ACM

Symposium on Applied Computing, 361-365.

[17] Ragothaman, P., & Panda, B (2002). Analyzing transaction logs for
effective damage assessment. Proceedings of the 16th Annual IFPI WG

11.3 Working Conference on Database and Application Security, 121-

134
[18] Zhou, J., Panda, B., & Hu, Y. (2004). Succinct and fast accessible data

structures for database damage assessment. In R. Gosh, & H. Mohanty,

(Eds), Distributed Computing and Internet Technology (pp. 111-119).
Berlin, Germany: Springer.

[19] Zhou J., & Panda B. (2005). A log independent distributed database

damage assessment model. Proceedings of the 2005 IEEE Workshop on

Information Assurance and Security, 302-309.

[20] Xie, M., Zhu, H., Feng, Y., & Hu, G. (2008). Tracking and repairing

damaged databases using before image table. Japan-China Joint
Workshop on Frontier of Computer Science and Technology (IEEE),

36 – 41.

[21] Liu, P., &Yu, M. (2011). Damage assessment and repair in attack
resilient distributed database systems. Association for Computing

Machinery (ACM), 33(1), 96 - 107.

[22] Lala, C., & Panda, B (2001). Evaluating damage from cyber-attacks: a
model and analysis. IEEE Transactions on Systems, Man, and

Cybernetics, volume 31, issue 4, 300-310.

[23] Fu, G., Zhu, H., Feng Y., Zhu, Y., Shi, J., & Chen, M. (2008). Fine
grained transaction log for data recovery in database system. Third

Asia-Pacific Trusted Infrastructure Technologies Conference (IEEE),

Washington, DC, USA.
[24] Ray, I., McConnell, R., Lunacek, M., & Kumar, V. (2004). Reducing

damage assessment latency in survivable databases. In W. Howard &

M. Lachlan (Eds.), Key technologies for data management (pp. 106-
111). Heidelberg: Springer Berlin.

[25] Lomet, D., Vagena, Z., & Barga, R. (2006). Recovery from “Bad” user
transactions. SIGMOD, June 27-29, Chicago, Illinois, USA.

[26] Gray, J., & Reuter, A. (1993). Transaction processing concepts and

techniques. San Francisco: Morgan Kaufmann.
[27] Bernstein, P., Hadzilacos, V., & Goodman, N. (1987). Concurrency

control and recovery in database systems. Addison-Wesley,

Massachusetts, USA.
[28] Microsoft Corporation – Northwind and Pubs Sample Databases for SQL

Server 2000 (2014). http://www.microsoft.com/en-

us/download/details.aspx?id=23654. Retrieved on April 21 16, 2014.

ACKNOWLEDGEMENTS

This work was sponsored by the Lebanese American

University.

BIOGRAPHY

Ramzi A. Haraty is an associate professor of Computer

Science in the Department of Computer Science and

Mathematics at the Lebanese American University in Beirut,

Lebanon. He received his B.S. and M.S. degrees in Computer

Science from Minnesota State University - Mankato,

Minnesota, and his Ph.D. in Computer Science from North

Dakota State University - Fargo, North Dakota. His research

interests include database management systems, artificial

intelligence, and multilevel secure systems engineering. He

has well over 110 books, book chapters, journal and

conference paper publications.

