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Abstract--With the advancement of Internet 

technology, securing information systems from electronic 

attacks has become a significant concern. With all the 

preventive methods, malicious users still find new ways to 

overcome the system security and access and modify 

sensitive information. To make the process of damage 

assessment and recovery fast and effective (not scanning 

the entire log), researchers have proposed different 

methods for segmenting the log file, and accordingly 

presented different damage assessment and recovery 

algorithms. In this work we present efficient damage 

assessment and recovery algorithms to recover from 

malicious transactions in a database based on the concept 

of the matrix. We also compare the various approaches 

and present the performance results. 
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I. INTRODUCITON 

Information warfare as described by Libicki and Fellow [1] 

is similar to discovering the nature of an elephant by a blind 

person. It refers to one of the most effective weapons that have 

been and are being used in today’s wars [2]. Warfare started 

with the Agrarian revolution and then passed by the industrial 

revolution to reach what we call nowadays ‘information 

warfare’ [3]. 

 

For the purpose of this work, information warfare is the set 

of techniques taken to gain access to the information of an 

adversary while defending your own information. Some of the 

weapons that can be used in such a war are: logic bombs, 

computer viruses, information collection, information 

manipulation, information degradation and denial of service 

[4-6]. To be able to defend data, and to be able to exploit the 

data of others, one should have a full understanding of how 

things work.  

 

During the past two decades, Internet usage has been 

increasing rapidly. This increase has always been 

accompanied by information sharing, which is a key element 

for the success and productivity of an organization. The 

importance of this process is to preserve the reliability of 

information. Securing information is made on three levels: 

prevention, detection and recovery. Prevention might fail and 

detection might be late, in this case some data might be 

corrupted. Detection can be split into two categories: the 

statistical models and the misuse detection [7]. It is assumed 

that an intruder’s behavior is noticeably different from that of 

a normal user, and statistical models are used to aggregate the 

user’s behavior and distinguish an attacker from a normal 

user. The aim, after this corruption and after detecting that 

something malicious has occurred, is to remove and clean the 

corruption and its consequences.  

 

Prevention, detection and recovery are three important 

phases in any “live” system. Malicious users manage to 

overcome preventative security measures and systems. None 

of the detection systems ensure that an attack will be 

immediately detected. Hence, damage could spread affecting 

other “clean” transactions as well. 

 

The complexity and efficiency of the recovery process is 

our main interest in this work. In some cases the adversary’s 

intentions are not only to insert malicious transactions but also 

to cause denial of service. Sometimes the size of the log file 

might increase tremendously before discovering that an attack 

has occurred. Thus, this will require more time to assess and 

recover from the malicious transaction and its effects. This 

increase in recovery time would lead to denial of service. We 

are interested in finding an algorithm that prevents such 

drawbacks or at least one that reduces them. One of the 

important issues that should also be addressed is what 

information should be saved in the log file as we prevent 

excess I/O. For this purpose, researchers have proposed using 

auxiliary structures for keeping track of dependencies [8-9]. 

 

In this paper we, present a damage assessment and 

recovery algorithm that keeps a matrix along with the logging 

process. This matrix saves the dependency between 

transactions and data items. During the recovery process all 

the needed information will be retrieved from the matrix. The 

aim of this work is to ensure speedy and efficient recovery. It 

requires only scanning part of the matrix to be able to discover 

the dependency rather than scanning the entire log file. In 

addition, the use of bits in our algorithm requires less 

processing. Dependency of transactions is saved in only one 

matrix, which requires less computational time and space. No 

logical operations and no graphs are used in this model as is 

the case with other approaches. All of this contributes to 

making our approach more efficient than previously proposed 

algorithms. 



 

 

II. LITERATURE REVIEW 

When dealing with electronic data and transactions, it is 

hard to identify which user is malicious and which is 

authenticated. The system treats all the users the same and 

accepts their transactions. For example in [10], every user is 

considered a malicious user and his transactions will not take 

actual action in the database until a certain period of time 

elapses. After this, the behavior can be classified as either 

malicious or non-malicious. Accordingly, and based on this 

behavior, transactions can be committed or aborted.  

 

As soon as an attack is detected by an intrusion detection 

system, it should be directly recovered. All transactions from 

the point of the attack and onwards should be assessed 

whether they are affected or not. Two approaches exist for 

assessing the malicious transaction effects: transactional 

dependency [11] and data dependency [12]. Transactional 

dependency stores all dependent transactions on one another 

in one segment. So the log is divided into multiple segments. 

In Panda and Haque used the data dependency approach where 

each segment stores only dependent operations. Therefore, a 

transaction’s operations may be stored in different segments. 

Each read/write operation in the transaction has a block 

number; this number shows dependency between operations. 

The authors suggest the use of a directed damage 

demonstration graph, which only presents the affected data 

items. The disadvantage of this algorithm is that it is limited to 

data dependency. Panda and Gordano in [13] proposed two 

data dependency algorithms; the difference between them is 

that in the first the damage assessment and recovery 

algorithms are performed simultaneously; whereas, in the 

second each one is performed separately. This difference 

implies different behaviors at the algorithm level as well. For 

example, when both damage assessment and recovery are 

done simultaneously, the system will have to go through 

denial of service for a longer period of time in order to recover 

completely. In both approaches the damage assessment works 

using directed graphs, where the nodes represent data items. 

When the intrusion detection system reports the occurrence of 

a malicious transaction, a node for each data item will be 

created. This graph helps in mapping how the damage has 

spread.  

 

The authors in [14] suggested segmenting the log files so 

the work would only be done on the part of the log that is 

affected. Operations are clustered according to their 

dependency where each cluster contains dependent operations. 

This clustering is done in a periodic way for the active 

transactions. Every operation will be stored in only one 

cluster, but a transaction can belong to more than one cluster. 

However, deleted transactions cannot be retrieved, so 

maliciously deleted transactions might be skipped. 

 

Traditional methods suggest scanning the log file from the 

point of the attack until the end of the file to undo and redo the 

affected transactions. Panda in [15] suggested a method which 

is fusing the malicious transactions to reduce the I/O time. The 

aim of this method is to minimize the time to insure best 

results without getting any other consequences. 

 

Panda and Tripathy [16] suggested the use of ‘Coldstar’ 

semantics in their algorithms where the database becomes 

unavailable for new transactions. They also present an 

algorithm using the ‘Warmstart’ semantics where the database 

use continues with some services but stops with others. 

 

In [17], the authors suggested segmenting log files into 

clusters. However, the size of the dependent transactions 

cannot be controlled; and hence, the clusters may grow in size. 

This imposes a weakness in the model, since two dependent 

transactions may belong to two different clusters because of 

size limitation. Hence, more work will be needed. To solve 

this problem, Haraty and Zeitunlian [8] proposed the use of 

clusters and sub clusters. Data inside a cluster are records that 

have some data dependency, whereas data in the same sub 

cluster could be there for one of the following two reasons: 

number of data items or space occupied. Zhou, Panda and Hu 

[18] proposed a similar model for distributed databases. The 

proposed model works on transaction dependency in order to 

recover from malicious attacks. This work extends the work of 

Zhou and Panda [19] and requires additional structures to 

recover when working on distributed databases. 

 

Xie, Zhou, Feng and Hu [20] suggested the use of a 

before-image (BI) table to keep track of all deleted 

transactions and to help in analyzing potential reads. The BI is 

a data object created in the database. BI tables are tables that 

are not accessible by users and have the same structure as the 

original tables, except that they do not have any constraints. 

To avoid the problem of data redundancy, Xie suggested using 

a time window to delete data items and restrict the size of the 

BI tables. 

 

Chakraborty, Majumdar and Sural [9] presented a column-

dependency approach. The advantage of this approach is that 

it takes less time than the traditional approach to recover from 

an attack. This approach has showed that the percentage of 

inconsistencies after re-execution increases with the increase 

of malicious transactions. 

 

The use of a Local Damage Assessment and Recovery 

(DAR) Manager and a Local DAR Executer on each site was 

suggested by Liu and Yu [21]. The Local DAR Executer starts 

by identifying all affected sub-transactions and continues to 

clean them. The algorithm requires global coordination 

between different sites. The algorithm starts by identifying the 

bad transactions and then sending them to the Local DAR 

Manager for cleansing. 

 

Lala and Panda [22] suggested clustering the transactions 

so there is no need to search transactions that have no effect. 

In this model, an additional column was added to each of the 

matrices that contains the cluster ID to which this transaction 

belongs. In such a method, the cluster may contain 



 

 

transactions more than just what is directly related. In 

addition, the cluster size must be manageable or else the 

cluster may contain all the transactions. Yet, if the cluster size 

is limited, then some related transactions might be in different 

clusters. Thus, all of the clusters need to be checked. 

 

Fu et al. [23] proposed the Fine Grained Transaction Log 

(FGTL). The disadvantage of this method is that the 

association degree of the transaction and the FGTL are 

inversely proportional. Hence, even though the integrity of the 

log file will be preserved; however, the services will face a 

major degradation. 

 

Ray et al. [24] performed analysis on existing algorithms 

along with a suggestion of new techniques. The complexity 

analysis was performed to check the complexity of the 

proposed algorithm in [1] as well as the algorithm suggested 

in [22]. The aim of this paper was to reduce the damage 

assessment latency so damage spreading will not occur. The 

disadvantage found in [1] was that the log file of this 

algorithm is huge; and therefore, it will take time to scan the 

part of the log after the malicious transaction. As for the 

algorithm proposed in [22], it showed a worst-case running 

time of O(vlogv + s), where v represents the number of 

affected transactions and s represents the sum of sizes of the 

transaction records. 

 

Lomet et al [25] dealt with the problem of bad user 

transactions that result in invalid data. Their method identifies 

the initial invalid data and all subsequent data that depends on 

it. Only transactions writing invalid data need to have their 

effects “de-committed”. The authors identified this closure of 

invalid data, via logging data reads. Their method then 

removes only the effects of invalid transactions.  

III. THE PROPOSED APPROACH 

The trigger for our proposed algorithm is the set of 

malicious transactions that it will receive from an intrusion 

detection system (IDS). Our algorithm is responsible of 

assessing the committed transactions and consequently 

classifying them into clean or affected transactions; then it 

deletes the malicious transactions and recovers the affected 

ones. 

 

In our approach, we assume we have a rigorous 

serializable history, as serializability theory provides 

correctness [26]. A sequential log file is also maintained in 

which only committed transactions are saved. This log file 

cannot be accessed by any users at any time and it will be used 

during the recovery process. Our approach requires the use of 

check points [27].  

 

The check point is a database event used in order to ensure 

faster detection and recovery process. Check points are 

committed after an agreed upon time interval after which we 

suspect that malicious transactions have either been detected 

or that the committed data is clean (or else the IDS would 

have detected the set of malicious transactions). The chosen 

time interval should not be too long so that the log file will not 

tremendously grow in size, yet long enough so that we will not 

have to go to previous check points to recover. Check points 

are beneficial in our proposed algorithm to reduce the space 

and reading time.  

 

After a check point has been reached (i.e., after the agreed 

upon time elapses), the dependency matrix will be purged. The 

dependency matrix will be purged at each check point as we 

assume that the probability of having a malicious transaction 

became very low. Still, if a malicious transaction was detected 

that occurred before the check point (worst case scenario), the 

log file will be used to rebuild the dependency matrix and then 

go through the same process as if no check point has occurred. 

The rebuilt dependency matrix will have the same 

characteristics as the dependency matrix that was built before 

the check point.  The matrix will only save the committed 

transactions. The importance of the dependency matrix is in 

the detection process. It will be used to discover the 

dependency among transactions; and hence, classify them into 

affected or clean transactions. Panda and Zhou in [11] used 

more than one matrix and applied logical operations between 

these matrices to discover dependencies. However, in our 

model only one matrix is used and it shows the dependencies 

without any logical operations. Complementary arrays are 

constructed in special cases as explained below.  

 

As the transactions are being executed, and after their 

commitment they will be added to the two-dimensional 

matrix. Thus, building the dependency matrix. Columns of the 

matrix correspond to the data items present in the database, 

whereas the rows represent the different committed 

transactions. For every transaction, each data item will have a 

value depending on the operations that the transaction has 

gone through, which is represented as follows: 

 

 0: if the data item is unmodified by a transaction. 

 1: if the data item is blindly written by a transaction; data 

from previous transactions is not needed. 

 A positive transaction ID: if dataitem1 that is accessed by 

Tx, is identified in the matrix with entry Ty such that y < x; 

this would mean that dataitem1 is updated according to the 

last modified value of dataitem1 by transaction Ty. 

 A negative transaction ID: this means that this data item 

was modified based on data items read from different 

transactions. 

 

Consider a transaction Tx. To modify dataitem1, Tx needs 

to read dataitem4 of transaction Ty, dataitem3 of transaction 

Tw, and dataitem1 from transaction Tv, where y, w and v < x. 

In this case, the entry in the matrix for that data item will be -

Tx. Still, -Tx alone will not help us in the recovery process as it 

does not show which transactions have affected it. To solve 

this problem, we added a complementary array that will only 

be manipulated in such cases. That is, in our example, the 

entry of the main matrix for dataitem1 in transaction Tx will 



 

 

have -Tx. Then, in the second array, the index will be the 

transaction ID that has been affected by other transactions, Tx. 

The index Tx will be pointing to Ty, Tw and Tv. This is 

depicted in figures 1 and 2. 

 
 1 2 3 …. 30 

Tv 1 0 0  1 

Tw 0 1 0  0 

….      

Ty 0 0 0  1 

Tx -Tx 0 0  0 

Fig. 1 The dependency matrix. 

 

 

 

 

 

 
Fig. 2 The complementary array. 

A. The Damage Assessment Algorithm 

Our proposed algorithm uses two array structures: the 

dependency matrix and the complementary array. The former 

stores dependencies between transactions. The latter saves the 

affected transactions that our algorithm will detect. The 

previously discussed structures along with the set of malicious 

transactions, provided by the IDS, are the main elements for 

our proposed detection algorithm. One of the characteristics of 

the log file and the matrix is that both are sequential. 

Transactions in both the log file and the dependency matrix 

are stored according to their commitment and such that there 

is no transaction Tj where j < i and Tj depends on Ti. 

Whenever recovery is required, our detection algorithm 

identifies the minimum transaction ID among the set of 

malicious transactions TMi. When the detection begins, the 

algorithm skips every entry before the TMi since they are not 

affected by any transaction in the set of malicious transactions. 

The TMi will be skipped as well since we already know that 

this is the malicious transaction, it needs to be deleted. This 

way, the algorithm will be reducing the effort that could be 

used on transactions that we know are clean.   

 

After the row TMi, the matrix will be traversed row by row and 

for each data item in that transaction (row), a check will be 

done to see how the data have been affected. If the entry is a 

‘0’ or ‘1’, then this means that this data item have not been 

modified in this transaction or that it is blindly written. Hence, 

our algorithm will skip that column as the data item is written 

cleanly and checks the following columns.  

 

On the other hand, positive and negative transaction IDs 

show a possibility that the transaction might be affected. If the 

entry contains a positive transaction ID, which means that the 

data item of this current transaction is dependent on the 

transaction, with the transaction ID present in that entry. To 

illustrate this, we consider the following case: upon searching 

the matrix reaching transaction Ti, and upon checking if this 

transaction is affected, we check each data item in the matrix. 

We consider the case where for that row, data item x have the 

following ID, Tj. This shows that to write data item x in 

transaction Ti the transaction read data from Tj. Hence, we 

search among the set of malicious transactions to check if Tj 

belong to it, if it does then we add Ti to the set of affected 

transaction. Then, our algorithm will not continue searching 

the other data items and skip to the next transaction following 

Ti. If Tj does not belong to the set of malicious transactions, 

we check if it belongs to the set of affected transactions. If Tj 

belongs to the set of affected transactions then we have 

indirect dependency and Ti should be added to the affected 

transactions. The algorithm checks the other data items for 

that transaction. The best case scenario is when the first data 

item in that row is affected. Hence, the transaction would be 

added to the set of affected transaction and the other data 

items will be skipped.  

 

The last case is having a negative transaction ID. This 

shows that the transaction we are currently looking at has been 

affected by more than one previously committed transaction. 

In this case, we will directly allocate the index of this 

transaction in the complimentary array to retrieve the content 

corresponding to the entry that we are currently checking. 

Consequently, the retrieved content will then be tested to 

check if any of this content has the same ID as any of the 

transaction IDs that are classified as malicious or affected 

transactions. Similarly, the steps done in this case are the same 

as in the previous case; i.e., if a malicious or affected 

transaction was among the transactions that this row 

(transaction) depends on, then we will add it to the affected set 

and skip to the next row. The damage assessment algorithm is 

summarized in figure 3. 

 
Receive the set of malicious transactions 

Select the minimum transaction ID among the malicious transactions 

For every transaction in the matrix starting from the minimum malicious ID to 
the end of the matrix 

   For each data item 

      If (entry == 0) then 
         Move to the next row 

      Else if (entry == 1) then 

         Move to the next row 
      Else if (entry < 0 && entry belong malicious transactions) 

         Add the current transaction to the set of affected transactions 

         Move to the next row 
      Else if (entry > 0 && entry does not belong malicious transactions) 

      For every transaction in the affected transactions set 

         If (entry == Taffected) 
             Add entry to affected transactions set 

             Move to the next row 

          Else if (entry < 0) 
             Search ComplementaryArray for key == entry 

  Tx   

Ty Tw Tv 



 

 

             For each element in ComplementaryArray [entry] 
                If(element belongs to malicious transactions) 

                     Add the current transaction to the set of affected transactions 

                   Move to the next row 
                Else if(element belong to the set of affected transactions) 

                      Add the current transaction to the set of affected transactions 

                   Move to the next row 
Fig. 3 The damage assessment algorithm. 

B. The Recovery Algorithm 

After the completion of the damage assessment algorithm, 

the recovery algorithm will be triggered by receiving the set of 

malicious and affected transactions. The malicious 

transactions will be deleted, while the affected transactions 

will be recovered to act as if no malicious transactions have 

occurred. The algorithm will run until we reach a stable state 

in the database - a state where all of the data is consistent (i.e., 

no malicious transaction exits and any affected transactions 

are recovered). The sets of malicious and affected transactions 

will be traversed and for each transaction we will go back and 

check what information the log file has about it in order to do 

the proper update. The algorithm is illustrated in figure 4. 

 
Receive the sets of malicious and affected transactions 

Read the file into an array 

For each transaction in the affected transaction set 
   Retrieve the log file information for that transaction 

   Update the database accordingly 

For each transaction in the malicious transaction set 
   Retrieve the log file information for that transaction 

   Delete the transaction 

Fig. 4 The recovery algorithm. 

C. An Example 

Consider a database for a company that contains 

information about the following: Employee, Customer, 

Category, Product and Order. Also, consider the following 

insert transactions: 

T1 = Employee (‘1’, ‘Kim’, ‘Stewart’, ‘1980-11-02’,’Sales’, 

‘$2000’); [for employee ID, first name, last name, date of 

birth, job, salary] 

T2 = Category (‘1’, ‘Beverages’); [for category ID, category 

name] 

T3 = Product (‘1’, ‘Pepsi’, ‘$1’, ‘1’); [for product ID, product 

name, price, category ID] 

T4 = Customer (‘1’, ‘X’, ‘Beirut’); [for customer ID, customer 

name, address] 

T5 = Order (‘1’, ‘1’, ‘1’, ‘1’, ‘300’, ‘$300’, ‘2012-12-01’); [for 

order ID, customer ID, employee ID, product ID, quantity, 

total, date] 

 

Let the dependency matrix that corresponds to this 

database be called M. This matrix, which is depicted in figure 

5, is composed of 22 columns (i.e., EID, FName, LName, 

EDOB, EJ, ESalary, CID, CName, CAddress, CatID, 

CatName, PID, PName, PP, CatID, OID, CID, EID, PID, QO, 

TO and date). As transaction T1, commits, a new entry in M 

will be created with the following attributes M[1][ ] = {1, 1, 1, 

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. The first six 

columns will have entries of ‘1’ because they are blindly 

written by transaction T1. The rest of the columns will be ‘0’ 

because they were left unmodified. Unlike transaction T3 

which depends on previously committed transactions. Each 

product belongs to a category and in this case product ‘1’ 

belongs to the category that was previously committed in 

transaction T2. T3 writes the first three attributes without 

looking at anything that was previously written, but the fourth 

attribute needs to look at the previous transaction. Therefore, 

the row for T3 will be M[3][] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 

1, 1, -T3, 0, 0, 0, 0, 0, 0, 0}. Transaction T5 depends on 

transactions T1, T3 and T4. The row corresponding to T5 is 

represented as follows: M[5][] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1,-T5, -T5, -T5, 1, -T5, 1}. OID, QO and date were 

blindly written by T5, unlike CID, EID, PID, and TO that 

needed an additional complementary structure. The OID, QO 

and date columns in transaction T5 will be represented by ‘1’. 

To manipulate M[5][16], we need the complementary 

structure to save the transaction that helped in getting the 

value of this field. Since T5 was for customer ‘X’ then this 

shows that there is dependency between transactions T5 and 

T4. Similarly, we will retrieve and save the dependency related 

to M[5][17] and M[5][18] ensuring not to repeat dependent 

transactions. Hence, this dependency will be reflected in 

Comp[T5] = {T4, T1, T3}, which is depicted in figure 6. 
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Fig. 5 The dependency matrix M. 

 

 

 

 

 

 

 
 

 
 

Fig. 6 The complementary array. 

 

Consider the case were the intrusion detection system will 

provide our model with ID T2. Hence, the algorithm will start 

searching the matrix starting from T3 rather than starting from 

T1. It will check every column in T3 and skip every column 

that contains a ‘0’ or ‘1’. Since the CatID column contains a 

negative ID, we will search the complementary array for T3. 

T3 T5 

  T2 T4 T1 T3 



 

 

The complementary array points to T2 which is malicious (see 

figure 6); hence, T3 will be added to the affected transactions 

set and we will skip to T4. The same thing will be repeated 

until the end of the matrix. The set of malicious and affected 

transactions will subsequently be sent to the recovery 

algorithm. During recovery, T2 will be deleted since it is 

malicious and the set of affected transactions will be updated. 

IV. CONCLUSION 

In this paper, we presented a new approach for recovery 

that depends on matrices. The dependency between 

transactions is saved in a matrix that will be formed as 

transactions are being committed. We tested our model and 

compared it with different approaches. The comparison results 

confirm that our approach is faster and more efficient than 

previously proposed models (traditional, traditional clustering, 

hybrid clustering according to data dependency and according 

to fixed size). As for future work, we will consider the space 

issue. Our algorithm requires the presence of a matrix along 

with a complimentary structure to save transactions it depends 

on; this requires space that could be diminished.  
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