
An Enhanced Quorum Selection Algorithm

Samer Younes and Ramzi A. Haraty
Department of Computer Science and Mathematics

Lebanese American University

Beirut, Lebanon

Email: {samer.younes@lau.lb, rharaty@lau.edu.lb}

Abstract---As communication becomes more and more an

integral part of our day to day lives, so our need to access

information increases as well. Mobility is currently one of the

most important factors to consider in our aim to achieve

ubiquitous computing, and with it raises the problem of how

to manipulate data while maintaining consistency and

integrity. Recent years have seen tremendous interest in

quorum systems adapted to mobile hosts; however, the more

recent topic, of studying the effects of mobile networks on

quorum systems, has also been the focus of interest for

building quorums aware of their network surroundings. This

paper presents a novel approach in selecting mobile hosts to

form epidemic quorum coteries, based on metrics measured

by mobile hosts and then transmitted to base station servers,

which maintain a vigil on the state of these mobile hosts to

provide higher quorum availability and ultimately higher data

accessibility, better integrity and consistency.

Index Terms---quorum selection, mobile environments, and cost

metrics.

I. INTRODUCTION

 Pervasive computing is a term loosely used to describe

the current state of computer technology in modern life.

Our reliance on computing mediums increases with the

need for mobility, connectivity and data availability.

 As an example, in a single day, the average individual

can go through a minimum of three different devices to

perform various everyday tasks such as checking his/her

email account on the desktop computer, calling a family

member on the cell phone, listening to some music in the

background on his/her personal laptop and syncing all

appointments from his/her palm-pilot to his/her email

client. Although we take such things for granted, our daily

interaction with data keeps increasing, and with it the need

to keep our data accessible, well-organized and safe.

 The quorum algorithm has been extensively studied

since its earlier days, adapting it to mobile devices with

connectivity issues and providing a solid quality of service

for quorum members is still in its infancy. The adaptation

of quorum consensus to mobile environments to insure a

high level of service is one of the main challenges to tackle.

 The architectures for mobile database systems have been

varied and diverse; however, all these architectures still

adhere to the ACID principals of standard databases

systems. Serrano-Alvarado et al [21] provide an excellent

overview of the various mobile database models, the most

popular of which, according to [21] and Kumar [11], are the

clustering model introduced by Pitoura and Bhargava in

[18], the 2-Tier replication model introduced by Gray et al

in [4], the HiCoMo model presented in [13] by Lee and

Helal, and the Pro-Motion model by Walborn and

Chrysanthis [23] [24].

 With a comprehension of the workings of these various

models, recent publications by Holliday et al [8], [9] and

Baretto Ferrero [1], seem to agree that quorum systems are

the best suited for a mobile environment. They present a

study of how epidemic algorithms can help increase the

reliability and availability of mobile database systems.

 Very recently, the interest in studying the effects of

mobile network environments on the performance and

availability of quorum systems has spurred interesting

publications in this area; most notable of which are, [17] by

Peysakhov et al. that provides a general quorum availability

evaluation and Baretto Ferrero [1] that deals more

specifically with the performance evaluation of epidemic

quorum algorithms.

 Other work by Gupta et al. [7] and Golovin et al. [4]

were also studied, pertaining to quorum placement and

congestion management, but the findings, although very

interesting, were left as future improvements on the

architecture presented herein.

 This paper presents a novel approach in selecting mobile

hosts (MHs) to form epidemic quorum coteries, based on

metrics measured by mobile hosts and then transmitted to

base station servers, which maintain a vigil on the state of

these mobile hosts to provide higher quorum availability

and ultimately higher data accessibility, better integrity and

consistency.

 The remainder of this paper is organized as follows:

section 2 presents the epidemic quorum algorithms. Section

3 discusses the improved quorum selection algorithm

architecture. Section 4 concentrates on the algorithms used

in our approach. Section 5 provides the performance

evaluation, and section 6 presents the conclusion.

II. EPIDEMIC QUORUM ALGORITHMS

 Epidemic Quorum Algorithms (which will be referred to

as eQuorums from hereon), are a particular breed of

epidemic algorithms which, like the normal quorum

algorithm, operate on the same basis with some particular

654 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

features that make them fit for distributed environments.

eQuorums are used as substitutes to the standard

pessimistic epidemic algorithm (ROWA) in environments

that require high system throughput, by allowing one

transaction to commit from each set of conflicting

transactions. As mentioned previously, transactions in

eQuorums are serialized in a causal fashion, so that out of

each pair of conflicting transactions, one and only one

transaction will commit through a yes, no, vote by site

quorums. Vote results are stored in a log that indicates the

local site's time, vote result and the identification number of

that site. This log entry is then propagated to other sites

through eQuorum messages until all sites have received the

vote results. Vote results are sent from all sites to all sites

and are propagated according to availability, among other

factors. When a particular site receives a positive vote for a

particular transaction, it automatically commits the data for

that transaction. When a particular transaction commits at a

certain site, all other conflicting transactions at that site are

aborted.

 The property of eQuorums is the availability of quorums

at various sites. The goal is to maximize the availability of

quorums and to increase the probability of the system,

eventually reaching a global consensus, and thus agreeing

on a given value. [1] provides a good overview of the

performance of eQuorums and provides tangible metrics

through which performance can be measured. [1] also

presents a unified framework to compare and measure

various epidemic quorum algorithms. The main goal of this

work is to ensure that the availability of quorums is

maximized, providing improved overall system

performance. eQuorums propagate data items based on per

site quorum votes. However, given that some sites may be

unavailable at times, or may require more information (in

the case of uncertain vote outcome), eQuorums perform a

finite number of voting rounds; the outcome of which may

be a second round of votes (if uncertain) or a decision. The

work refers to these two metrics as probabilistic values

represented by rep for the repeat probability condition and

dec for the decision probability condition.

 The probabilistic properties of rep and dec are as

follows:

- 1)()(ndecnrep

- and 1)(: nrepn

 Following the above workings of eQuorum votes and its

probabilistic constraints, [1] has defined the availability of

an eQuorum by the formula given in (1):

y

n

ny

f

n

f

nrep

ndecpp
n

y

0

)(

)(1

)()1(
 (1)

 where pf is the probability of failure of a given host to

vote, part of the numerator expression

)()1(
)(

ndecpp
n

y ny

f

n

f represents the probability

of having n correct processes out of y, and

)(1

)(

nrep

ndec
represents the probability of consecutive

repeat votes followed by a decide vote.

 Although [1] assumes pf to be constant and uniform, in

reality, given the volatile nature of wireless networks, the

probability of failure cannot be fixed or defined ahead of

time, as disconnections may occur randomly and without

prior precursors. However, a general behavioral pattern for

pf can be deduced and applied to equation (1). The goal is

to minimize the probability of failure pf to maximize

availability. It is also worth mentioning that as rep and dec

grow, availability grows.

 Although the sensing and incorporation of network

states in quorums is a very recent topic of discussion, the

most notable work in this area of research has been done by

Peysakhov et al. [17] and Gupta et al. [6][7]. The approach

brought forth by [17] uses the same general principals.

However, instead of using the standard client/server model,

[17] uses migrating agents applied to standard quorums. As

for the metrics evaluated in [17], they use a probability

density function (equations (2) and (3)), similar to equation

(1), of positive versus total number of votes, to calculate a

confidence factor.

)(
)1(

ny

f

n

f pp
n

y
 (2)

 and

Ck

kxfCF 9.0)()(
 (3)

 where C is a pre-selected confidence interval and F(C)

denotes the combined probabilities of all the members of C.

The process of measurement works by continually

collecting votes until such time as the uncertainty threshold

(in the above example 0.9 ~ 90%), defined as values lying

outside of the interval C, is reached. On a given site these

values would tend to indicate that a certainty for either a

positive or negative outcome of the votes has been reached

by the quorum. Although [17]'s method enhances the

general confidence in a quorum, the presented approach

deals only with the quality of the host as measured prior to

Figure 1. IQSA general architectural overview.

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 655

© 2009 ACADEMY PUBLISHER

quorum selection. Furthermore, an agent approach to data

collection suffers in weakly connected networks. The

measures presented in this work would also help agents

find better hosts to collect data from, reducing the amount

of failed visits an agent may encounter.

III. IQSA ARCHITECTURE

 This section explains the architecture and various

modules used to achieve better quorum host selection,

based on metrics measured by the mobile hosts pertaining

to their state, and sent periodically to the base server (BS).

We introduce the following metrics and variables to

measure the performance, connectivity and health of a

particular mobile host.

Signal Strength: Defines the current signal strength of

a MH, currently registered with a BS. In general, the

signal strength can be expressed as a percentage of the

maximum speed available on a particular wireless

network.

Host Priority: Depending on the current signal strength

of the MH, a priority number is given to that MH. The

higher the signal strength, the higher the priority. This

can be set directly by the MH, or if selected as part of

the quorum in a given BS, the BS may assign that MH

a priority, based on measurements by the BS.

Host Trend: We also define a derived metric based on

the performance of a MH's signal strength with time.

The trend of an MH's signal strength is calculated

using a standard weighted linear regression, which

shows the trend over time of the aggregates of both

aforementioned metrics.

 The BS on the other hand, once it receives this data from

a MH, will classify it in a heap structure that allows the BS

to pick the best performing MHs when a quorum is being

built. The heap structure on the BS is constantly maintained

as a max heap. Every new mobile host addition to the MH,

will force the BS to restructure the max heap to take into

account this new addition.

Figure 1 provides more insight into the architecture, by

showing how packets get arranged in the BS' max heap

structure. The max heap keeps a record of all currently

registered MHs with it, and orders the list, based on the

metrics mentioned prior, from largest (most reliable host) to

smallest (least reliable host).

 The architecture also introduces the means to migrate

MHs from one BS to another. Since the MH is essentially a

mobile unit (cell phone, PDA, Laptop) with a moving user,

for example, this user may travel through various BSs

while going to work, and as such may travel and register

with various base stations (similar again to the mobile

phone network). So as not to clutter every BS with stale

data, the MH will automatically be unregistered from a BS

once that MH leaves its area of coverage. When a user

registers with a new BS, the MH will automatically send

the new BS the previous BS's address it was registered

with.

 This allows both BSs to communicate with each other

and migrate the entry from the previous BS to the new BS.

In some cases, mobile users may swing between two or

more BSs, creating heavy migration traffic. In these cases,

the MH may opt to remain registered with a particular BS

as long as the cell that the user was registered in, is

adjacent, in terms of area of coverage, to the the cell

he/she's currently in. Figure 2 illustrates such a scenario,

where MH7 migrates from a BS's coverage of cell C7 to a

BS covering cell C6. The entry for MH7 is automatically

migrated from C7 to C6 by communication between the

BS's of both cells, as soon as the MH provides the new BS

with the address of the previous BS.

 The adjacency scenario can also be inferred from Figure

2 as well, where C7 has adjacent cells C6, C5 and C4

through which the BS, if present in any of the three, may

use them as a bridge to communicate directly with C7,

without re-registering with either C4, C5 or C6.

Figure 2. IQSA architecture mobile host migration process.

IV. THE ALGORITHMS

 In this section, we discuss the high level algorithms that

need to be implemented, in order to mimic the architecture

discussed in the previous chapter. Although the core parts

of it have been implemented in C++, this chapter presents

the various modules in a more high level descriptive

language.

 Figure 3 shows the various high level parts and their

high level interaction with one another.

 The client module is responsible for serializing the data

and sending it over the wire to the server. When a server

receives a packet from a client, it stores and classifies the

656 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

client data into a max heap structure, based on the priority

metric measured at the client end. The last module involves

the inter-server data exchange system, which allows servers

to exchange information about clients when they migrate

from one server to the other and complete registration.

Figure 3. IQSA high level modules interaction.

A. Client Agent Procedures and Data Structures

 The following is the Client data structure of metrics and

measurements.

type: HostData
record

SignalStrength : int

Hostname : string
PreviousBS : string

Priority : float

Trend : double
Time : vector of double

PrioSig : vector of double
 Of the aforementioned variables, most should be

familiar from previous chapters, with the notable

exceptions of the Time vector structure and the PrioSig

vector structure. The Time structure, as the name indicates,

holds a timestamp for every measure of both the

SignalStrength and Priority performed by the agent, at

specific intervals metrics. Every time these two metrics are

measured, a timestamp is added to the dynamic array. This

also holds true for the first time the structure is being

initialized as well. The PrioSig structure on the other hand,

holds an aggregate weighted measure of both the Priority

metric and SignalStrength metric. These two vector

structures are used to store historical data, needed by the

linear regression function, which measures the host's trend

metric.

 When a MH first connects, it initializes all its metrics

with either the most current measure taken (signal strength

and priority), or to default values (trend metric). The trend

metric is initially set to zero due to the unavailability of

data to perform regression calculation. A minimum of two

datum points are needed to perform a linear approximation,

hence the greater than or equal to 2 condition in the

calculateTrend procedure. Calculations of a weighted

aggregate value combining both signal strength and priority

metrics is also performed. The aggregation of these two

metrics and its subsequent use in the linear approximation,

would allow the environment to control which metric

should have a higher importance, by assigning it a variable

weight factor. The ensuing aggregate value is then

associated with a timestamp in order to calculate the trend

metric over time. This calculation is performed every time

the client agent gets an updated measure on the basic

metrics: signal strength and priority. The updates for the

signal strength, priority metrics, and trend metric have been

split into two procedures to make allow greater control over

when and in which order these two procedures get called.

Once all the data has been updated, the client serializes the

host data and sends it over the wire to the BS.

calculateTrend(PrioSig, Time) :
 begin:

 if { sizeof(PrioSig) 2 } then

 Linear A = CalculateLinearReg(sizeof(Time),

PrioSig, Time);

 return getSlopeOf(A);

 else

 return 0;

 end;

calculateWeightedAggregate(SignalStrength, Priority) :

 begin:

 signalWeight signalImportanceFactor;

 priorityWeight priorityImportanceFactor;

 return

(SignalStrength*signalWeight)+(Priority*priorityWeight);

 end;

initialize(HostData) :

 begin:

 SignalStrength = measured(SignalStrength);

 Hostname gethostbyname();

 Priority measured(Priority);

 Time[] push { time(now) };

 PrioSig[] push {

weightedLinearDist(SignalStrength, Priority) };

 Trend calculateTrend(PrioSig, Time);

 end;

updateMetrics(SignalStrength, Priority) :

 begin:

 Time[] push { time(now) };

 PrioSig[] push {

weightedLinearDist(SignalStrength, Priority) };

 end;

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 657

© 2009 ACADEMY PUBLISHER

updateTrend() :

 begin:

 trend calculateTrend(PrioSig, Time);

 end;

B. Server Side Procedures

 On the receiving end, is the base station, running a

server listening for registration and update requests sent by

MH agents. The BS is responsible for maintaining an

organized max heap structure of all currently registered

MHs that fall under its zone of coverage. Once a

registration or update packet is received, the following

procedures take place to insure the careful addition/update

of that MH's information into the BS's heap structure.

Step1: The BS would first check if the record for that MH

is currently registered with it as a BS, if not the BS will

retrieve that data from the last BS that MH was registered

with and ask the previous BS to delete the entry of that MH

in its heap. The BS will then send the MH its credentials to

update its BS information and proceed to add the MH's

record to its max heap structure.

Step2: If the MH's record already exists then the BS will

consider the incoming data as an update and proceed to

search and update its heap structure with the new data sent

by the MH agent.

Step 3: The last case the server considers is when no

previous BS record has been sent by the MH and no data

for that MH has been found in the server's heap structure.

In this case the server will assume that this is a first time

sign on by a new client and proceed as outlined in step 1.

insertMaxHeap(heapStruct[], HostData Element) :
 begin:

 if(Element.serverID neq serverID) then

 migrateRecord (Element.serverID,

Element.HostID);

 else if (position searchForElement (heapStruct[],

Element) -1) then

 updateElement (heapStruct[], Element,position

);

 else

 heapStruct[] push (Element);

 buildHeap (heapStruct []);

 sortHeap (heapStruct[], length[heapStruct]);

 end;

V. PERFORMANCE EVALUATION

 The algorithm performance is measured in the standard

Big O notation. Every essential part of the algorithm will be

evaluated individually, and an aggregate performance

measure will be derived from the parts. We first identify the

following areas of the code that affect the performance of

the algorithm, as presented in the previous section. We also

distinguish between the preprocessing stage, which

involves building and maintaining the heap structure, and

the quorum selection process, which is a bounded function

that depends on the size of the expected quorum. The

amount of messages passed between the MH agent and the

server are measured to insure that the least amount of

needed messages are passed and to minimize network

congestion problems that adversely affect the overall

performance of the quorum process.

 The performance of the heap building and sorting

algorithms are well-known. Measures have been

extensively detailed, so no formal proof will be given.

Instead, only the final end result will be presented. Locating

an element in the heap has linear performance)(nO .

Although better search performance can be achieved using

more efficient algorithms, it is not the focus of this work to

tackle this issue, and is left as a future improvement.

However, it is worth mentioning that n is bounded by the

limited amount of hosts a BS can handle. As such we can

represent the search procedure as))(max(MHO for a

particular BS.

 Taking the above performance measures into account,

the following paragraph evaluates the performance of the

main procedures that maintain and update the list of MHs

currently registered with a particular BS.

 Since this particular procedure involves code execution

on two sites, a breakdown of the code execution on every

site is measured, whereas network delays and other external

factors have been ignored. The first step of the migration

involves sending a request to a remote server, where a

search and delete procedure is executed. The search

procedure's performance is)(nO , with)1(O performance

for deletion once that record is found. When a record is

received by the current server, the MH attempts to register

using the combined insert and sort operations of the max

heap structure. This adds a performance execution overhead

of))(log.(22 nnO , for a total combined worst case

performance hit of))(log.(23 nnO , which executes in

polynomial time. Identical performance can be expected of

the insertMaxHeap procedure in the case of an element

update. Generalizing this to m sites, would yield a worst

case global performance described in Expression (1).
m

k

nnO
0

23))(log.((1)

 Ordinarily an insert operation on a heap data structure

should be of the order))(log(nO . However, due to the

choice of the key (the Priority variable) chosen to sort the

heap on, finding a host would require linear time instead,

658 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

based on the MH's identification string. This is one

shortcoming that can be remedied in subsequent

development of this architecture, and as mentioned prior, it

is not the focus of this work to tackle all possible

optimization aspects of the algorithm, but rather, to show

that it is a viable architecture that can provide improved

availability and reliability to epidemic quorum groups.

 By selecting the best performing hosts from the max

heap data structure to participate in an epidemic quorum,

the BS insures that the probability of a process failure on

the selected MH is kept to the minimum possible, based on

the general state of the network. As such, going back to Eq.

(1), we propose to see the effects of minimizing the process

failure factor pf on the overall availability of the epidemic

quorum. Earlier, [1] sets pf as a fixed value and measures

availability based on the probabilities for vote repetitions

and vote decisions. Whereas, the proposed mathematical

model tackled here, measures how a variable pf affects the

overall availability for discrete values of dec and rep.

 Appendix 1 tables and figures explain the mathematical

results obtained, based on the mathematical framework

presented in [1] for epidemic quorum availability

measurement. The results also indicate that a minimum

threshold should be respected when selecting MHs for

quorums, below which, availability may suffer. This

threshold would allow the MH selection procedure to set a

cutoff point below which hosts would not be selected.

 The results clearly show that based on the mathematical

model presented in [1], the combination of a variable pf,

decision probability and repetition, although mainly

affected by the probability of a quorum reaching a decision,

clearly diminishes as the pf factor increases. Selecting MHs

with low probabilities of failures would ultimately lead to a

far more stable and available quorum system. The

probability for reaching a quorum decision on the other

hand, is not directly related to pf, but an indirect relation

with the previous two factors may be inferred. Lesser

available systems will most likely delay the outcome of the

vote, if systems go off-line, forcing an increase in repetition

cycles. Although the model does indicate that high

availability is achieved, the convergence time to a

consensus will increase with the amount of repetitions,

leading to higher delays in up-to-date data acquisition.

Table 4 shows the variance of pf with high probability of

repetition.

 Trivially, with higher vote repetition, in the worst case

scenario, the time tvote it would take to create a quorum and

reach a result can be expressed by equation (4):

)max(

0

rep

n

repetitioncreatevote ttt (4)

 where trepetition would vary with each repeat round,

depending, among other factors, on network conditions as

well. The repetition factor is not only calculated based on

process failure, but also assumes the ability of a quorum to

reach a decision based on the amount of information

available to that quorum. The model in this thesis deals

with the process failures due to network outages, rather

than quorum failures, and as such, the repetition time and

vote time factors expressed in Eq. (4) can be minimized by

selecting highly reliable hosts, thus reducing both tcreate, in

the initial creation of the quorum, and trepeat when

subsequent quorum votes need to be carried.

 Theoretically, the model provides insight into the

availability of epidemic quorums, but given the difficulty to

model real world network failures due to its mathematical

complexity, only live system tests can verify the viability of

such a model. The author is confident that by applying the

presented theoretical model, this will unequivocally have a

positive result on the availability of epidemic quorums.

Since no live model was made available at the time of

writing, a simulation was constructed to portray the

availability of an epidemic quorum, by providing MH

performance results with a discrete MH failure model.

VI. CONCLUSION

 This work has presented an overview of the various

mobile database models currently available, focusing

mainly on the epidemic model, and more precisely on

epidemic quorums. A novel approach to epidemic quorum

selection based on an effort to minimize network

disconnections, often experienced by wireless mobile hosts,

was presented. The purpose of which, is to provide a more

reliable quorum, with higher data availability. The

classification of hosts according to measured and derived

metrics, allows the model to be extended and incorporate

other metrics which may be deemed important in later

revisions, such as: database connection counts and

performed transactions counts, to further refine the

classification of mobile hosts. Although this primary study

of the architecture was deemed satisfactory by its author,

more work is needed to further refine the mathematical

model and incorporate more complex network failure

models that may further indicate the usefulness of this

model. Work done in [6] and [7] can also be incorporated in

the model to provide better quorum placement, minimizing

network congestion and delays, instead of relying solely on

traffic priority settings.
One of the main points to focus on in future studies on

this topic, would include, building historical track record of

mobile hosts based on more elaborate regression models

(such as a Bayesian regression model), rather than the

simplistic linear model used herein. This would require that

real performance data be made available to the system in

order to allow the Bayes engine's learning process to

evaluate its current state, based on measurements that

reflect the reality of the system. The author also recognizes

that much improvement should also be done on the

algorithm itself, allowing for much better performance,

especially in the area of host lookup, where a hash lookup

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 659

© 2009 ACADEMY PUBLISHER

table may be constructed in order to minimize lookup

times. All in all the studies and results provided herein

show how important a role the network environment plays

in the performance of quorums in general and epidemic

quorums in particular. Although this is still a very recent

area of interest and study in mobility, it is however

receiving just attention, especially in the wake of the

wireless revolution, where reliable connectivity is

considered whimsical in comparison to its wired

counterparts.

REFERENCES

[1] Baretto, J., and Ferrero, P. (February 2007). The Availability

and Performance of Epidemic Quorum Algorithms. INESC-

ID Technical Report 10/2007.

[2] Bernard, G., Ben Othman, J., and Bouganim, L. (June 2004).

Mobile Databases: A Selection of Open Issues and Research

Directions. ACM SIGMOD record, 33(2) 78-83.

[3] Cormen, T., Leiserson, C. E., Rivest, R., L., and Stein, C.,

(2001). Introduction to Algorithms. Second Edition.

Massachusets: MIT Press.

[4] Golovin, D., Gupta, A., Maggs, B.M., Oprea, and F., Reiter,

M.K. (July 2005). Quorum Placement in Networks:

Minimizing Network Congestion. Proceedings of the 24th

Annual ACM Symposium on Principles of Distributed

Computing (PODC'05), Denver, Colorado, USA, 16–25.

[5] Gray, J., Helland, P., O’Neil, P., and Shasha, D. (June 1996).

The Dangers of Replication and a Solution. ACM SIGMOD

Conference, Montreal, Canada.

[6] Greis, M. Tutorial. Retrieved from Marc Greis' Tutorial for the

UCB/LBNL/VINT Network Simulator "ns" Web site:

http://www.isi.edu/nsnam/ns/tutorial/index.html. 2007.

[7] Gupta, A., Maggs, B. M., Oprea, F., and Reiter, M. K. (July

2005). Quorum Placement in Networks to Minimize Access

Delays. Proceedings of the 24th Annual ACM Symposium on

Principles of Distributed Computing (PODC'05), Las Vegas,

NV, USA, 87–96.

[8] Holliday, J., Agrawal, D., and El Abbadi, A. (July 2002).

Disconnection Modes for Mobile Databases. Wireless

Networks, 8(4) 391-402.

[9] Holliday, J., Steinke, R., Agrawal, D., and El Abbadi, A.

(September 2003). Epidemic Algorithms for Replicated

Databases. IEEE Transactions on Knowledge and Data

Engineering, 15(5), 1218-1238.

[10] Kafri, N., and Jane ek, J. (2002).Dynamic Behavior of the

Distributed Tree Quorum Algorithm. Proceedings of the 22

International Conference on Distributed Computing Systems

(ICDCS'02), Vienna, Austria, 517-524.

[11] Kumar, V. (2006). Mobile Database Systems. New Jersey: J.

Wiley & Sons Inc.

[12] Kuruppilai, R., Dontamsetti, M., and J. Cosentino, F. (1997).

Wireless PCS. New York: McGraw-Hill.

[13] Lee, M., and Helal, S. (2002). HiCoMo: High Commit

Mobile Transactions. Kluwer Academic Publishers

Distributed and Parallel Databases (DADPD), 11, 1.

[14] Madria, S. K., and Bhargava, B. (2001). A Transaction Model

for Improving Data Availability in Mobile Computing.

Kluwer Academic Publishers Distributed and Parallel

Databases (DAPD), 10, 2.

[15] Mouly, M., and Pautet M. B. (1992). The GSM System for

Mobile Communications. France: Cell and Sys Publications.

[16] Peleg, D., and Wool, A. (1995). The Availability of Quorum

Systems. Information and Computation, 123(2), 210-223.

[17] Peysakhov, M., Dugan, C., Modi, P. J., and Regli, W. (May

2006). Quorum Sensing on Mobile Ad-Hoc Networks.

Proceedings of the Fifth International Joint Conference on

Autonomous Agents and Multi Agent systems (AAMAS'06),

Hakodate, Japan, 1104-1106.

[18] Pitoura, E., and Bhargava, B., (1995). Maintaining

Consistency of Data in Mobile Distributed Environments.

Proceedings of 15th International Conference on Distributed

Computing Systems.

[19] Pitoura, E., and Bhargava, B., (1999). Data Consistency in

Intermittently Connected Distributed Systems. IEEE

Transactions on Knowledge and Data Engineering (TKDE),

11, 6.

[20] Ross, K. A., and Wright, C. (1999). Discrete Mathematics

Fourth Edition. New Jersey: Prentice Hall.

[21] Serrano-Alvarado, P. (2004). A Survey of Mobile

Transactions. Distributed and Parallel Databases. 16, 193-

230.

[22] VINT GROUP, from the Manual (formerly Notes and

Documentation) Web site:

http://www.isi.edu/nsnam/ns/doc/everything.html. 2007.

[23] Walborn, G. D., and Chrysanthis, P. K. (September 1995).

Supporting Semantics-based Transaction Processing in

Mobile Database Applications. Symposium on Reliable

Distributed Computing Systems (SRDS), Bad Neuenahr,

Germany.

[24] Walborn, G. D., and Chrysanthis, P. K., (March 1997). PRO-

MOTION: Management of Mobile Transactions. ACM

Symposium on Applied Computing, San Jose, USA.

[25] Walborn, G. D., and Chrysanthis, P. K., (February 1999).

Transaction Processing in PRO-MOTION. ACM

Symposium on Applied Computing, San Jose, USA.

Samer Younes a senior web developer and systems integrator at

Solidere, one of the biggest real estate companies in the Middle

East. His main role is developing a new web presence for the

company as well as designing and implementing intranet web

platforms and solutions for the company's use. Prior to this position

he worked as a system administrator and application developer for

the Lebanese American University where he also taught as a part

time instructor. In his spare time Samer cultivates his avid interest

in the Open Source movement and the Linux platform with

particular interest in emerging web technologies and virtualization

frameworks.

Ramzi A. Haraty is an associate professor of Computer Science

and the assistant dean of the School of Arts and Sciences at the

Lebanese American University in Beirut, Lebanon. He received his

B.S. and M.S. degrees in Computer Science from Minnesota State

University - Mankato, Minnesota, and his Ph.D. in Computer

Science from North Dakota State University - Fargo, North Dakota.

His research interests include database management systems,

artificial intelligence, and multilevel secure systems engineering.

He has well over 100 journal and conference paper publications. He

is a member of the International Society for Computers and Their

Applications.

660 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

APPENDIX A.

TABLE 1. AVAILABILITY CHART WITH DEC=0.6 AND REP=0

Dec Rep

1 0

Pf Sum(Pf)

0 1.0000000000

0.1 0.9999999999

0.2 0.9999998976

0.3 0.9999940951

0.4 0.9998951424

0.5 0.9990234375

0.6 0.9939533824

0.7 0.9717524751

0.8 0.8926258176

0.9 0.6513215599

1 0.0000000000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.0000000000

Pf

A
v
a
il
a
b
il
it
y

TABLE 2. AVAILABILITY CHART WITH DEC=0.25 AND REP=0

Dec Rep

0.6 0

Pf Sum(Pf)

0 0.6000000000

0.1 0.5999999999

0.2 0.5999999386

0.3 0.5999964571

0.4 0.5999370854

0.5 0.5994140625

0.6 0.5963720294

0.7 0.5830514851

0.8 0.5355754906

0.9 0.3907929359

1 0.0000000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.6000000000

Pf

A
v
a
il
a
b
il
it
y

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 661

© 2009 ACADEMY PUBLISHER

TABLE 3. AVAILABILITY CHART WITH DEC=0.25 AND REP=0

Dec Rep

0.25 0

Pf Sum(Pf)

0 0.2500000000

0.1 0.2500000000

0.2 0.2499999744

0.3 0.2499985238

0.4 0.2499737856

0.5 0.2497558594

0.6 0.2484883456

0.7 0.2429381188

0.8 0.2231564544

0.9 0.1628303900

1 0.0000000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.2500000000

Pf

A
v
a
il
a
b
il
it
y

TABLE 4. AVAILABILITY CHART WITH DEC=0.25 AND REP=0.65

Dec Rep

0.25 0.65

Pf Sum(Pf)

0 0.7142857143

0.1 0.7142857142

0.2 0.7142856411

0.3 0.7142814965

0.4 0.7142108160

0.5 0.7135881696

0.6 0.7099667017

0.7 0.6941089108

0.8 0.6375898697

0.9 0.4652296856

1 0.0000000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.7142857143

Pf

A
v
a
il
a
b
il
it
y

662 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

