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Abstract---As communication becomes more and more an 

integral part of our day to day lives, so our need to access 

information increases as well. Mobility is currently one of the 

most important factors to consider in our aim to achieve 

ubiquitous computing, and with it raises the problem of how 

to manipulate data while maintaining consistency and 

integrity. Recent years have seen tremendous interest in 

quorum systems adapted to mobile hosts; however, the more 

recent topic, of studying the effects of mobile networks on 

quorum systems, has also been the focus of interest for 

building quorums aware of their network surroundings. This 

paper presents a novel approach in selecting mobile hosts to 

form epidemic quorum coteries, based on metrics measured 

by mobile hosts and then transmitted to base station servers, 

which maintain a vigil on the state of these mobile hosts to 

provide higher quorum availability and ultimately higher data 

accessibility, better integrity and consistency. 

Index Terms---quorum selection, mobile environments, and cost 

metrics.

I. INTRODUCTION 

     Pervasive computing is a term loosely used to describe 

the current state of computer technology in modern life. 

Our reliance on computing mediums increases with the 

need for mobility, connectivity and data availability. 

     As an example, in a single day, the average individual 

can go through a minimum of three different devices to 

perform various everyday tasks such as checking his/her 

email account on the desktop computer, calling a family 

member on the cell phone, listening to some music in the 

background on his/her personal laptop and syncing all 

appointments from his/her palm-pilot to his/her email 

client. Although we take such things for granted, our daily 

interaction with data keeps increasing, and with it the need 

to keep our data accessible, well-organized and safe. 

     The quorum algorithm has been extensively studied 

since its earlier days, adapting it to mobile devices with 

connectivity issues and providing a solid quality of service 

for quorum members is still in its infancy. The adaptation 

of quorum consensus to mobile environments to insure a 

high level of service is one of the main challenges to tackle. 

     The architectures for mobile database systems have been 

varied and diverse; however, all these architectures still 

adhere to the ACID principals of standard databases 

systems. Serrano-Alvarado et al [21] provide an excellent 

overview of the various mobile database models, the most 

popular of which, according to [21] and Kumar [11], are the 

clustering model introduced by Pitoura and Bhargava in 

[18], the 2-Tier replication model introduced by Gray et al 

in [4], the HiCoMo model presented in [13] by Lee and 

Helal, and the Pro-Motion model by Walborn and 

Chrysanthis [23] [24]. 

     With a comprehension of the workings of these various 

models, recent publications by Holliday et al [8], [9] and 

Baretto Ferrero [1], seem to agree that quorum systems are 

the best suited for a mobile environment. They present a 

study of how epidemic algorithms can help increase the 

reliability and availability of mobile database systems.  

     Very recently, the interest in studying the effects of 

mobile network environments on the performance and 

availability of quorum systems has spurred interesting 

publications in this area; most notable of which are, [17] by 

Peysakhov et al. that provides a general quorum availability 

evaluation and Baretto Ferrero [1] that deals more 

specifically with the performance evaluation of epidemic 

quorum algorithms.  

     Other work by Gupta et al. [7] and Golovin et al. [4] 

were also studied, pertaining to quorum placement and 

congestion management, but the findings, although very 

interesting, were left as future improvements on the 

architecture presented herein. 

     This paper presents a novel approach in selecting mobile 

hosts (MHs) to form epidemic quorum coteries, based on 

metrics measured by mobile hosts and then transmitted to 

base station servers, which maintain a vigil on the state of 

these mobile hosts to provide higher quorum availability 

and ultimately higher data accessibility, better integrity and 

consistency. 

     The remainder of this paper is organized as follows: 

section 2 presents the epidemic quorum algorithms. Section 

3 discusses the improved quorum selection algorithm 

architecture. Section 4 concentrates on the algorithms used 

in our approach. Section 5 provides the performance 

evaluation, and section 6 presents the conclusion.  

II. EPIDEMIC QUORUM ALGORITHMS 

     Epidemic Quorum Algorithms (which will be referred to 

as eQuorums from hereon), are a particular breed of 

epidemic algorithms which, like the normal quorum 

algorithm, operate on the same basis with some particular 

654 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER



features that make them fit for distributed environments. 

eQuorums are used as substitutes to the standard 

pessimistic epidemic algorithm (ROWA) in environments 

that require high system throughput, by allowing one 

transaction to commit from each set of conflicting 

transactions. As mentioned previously, transactions in 

eQuorums are serialized in a causal fashion, so that out of 

each pair of conflicting transactions, one and only one 

transaction will commit through a yes, no, vote by site 

quorums. Vote results are stored in a log that indicates the 

local site's time, vote result and the identification number of 

that site. This log entry is then propagated to other sites 

through eQuorum messages until all sites have received the 

vote results. Vote results are sent from all sites to all sites 

and are propagated according to availability, among other 

factors. When a particular site receives a positive vote for a 

particular transaction, it automatically commits the data for 

that transaction. When a particular transaction commits at a 

certain site, all other conflicting transactions at that site are 

aborted. 

     The property of eQuorums is the availability of quorums 

at various sites. The goal is to maximize the availability of 

quorums and to increase the probability of the system, 

eventually reaching a global consensus, and thus agreeing 

on a given value. [1] provides a good overview of the 

performance of eQuorums and provides tangible metrics 

through which performance can be measured. [1] also 

presents a unified framework to compare and measure 

various epidemic quorum algorithms. The main goal of this 

work is to ensure that the availability of quorums is 

maximized, providing improved overall system 

performance. eQuorums propagate data items based on per 

site quorum votes. However, given that some sites may be 

unavailable at times, or may require more information (in 

the case of uncertain vote outcome), eQuorums perform a 

finite number of voting rounds; the outcome of which may 

be a second round of votes (if uncertain) or a decision. The 

work refers to these two metrics as probabilistic values 

represented by rep for the repeat probability condition and 

dec  for the decision probability condition. 

     The probabilistic properties of rep  and dec  are as 

follows: 
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     Following the above workings of eQuorum votes and its 

probabilistic constraints, [1] has defined the availability of 

an eQuorum by the formula given in (1): 
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     Although [1] assumes pf to be constant and uniform, in 

reality, given the volatile nature of wireless networks, the 

probability of failure cannot be fixed or defined ahead of 

time, as disconnections may occur randomly and without 

prior precursors. However, a general behavioral pattern for 

pf can be deduced and applied to equation (1). The goal is 

to minimize the probability of failure pf to maximize 

availability. It is also worth mentioning that as rep  and dec

grow, availability grows. 

     Although the sensing and incorporation of network 

states in quorums is a very recent topic of discussion, the 

most notable work in this area of research has been done by 

Peysakhov et al. [17] and Gupta et al. [6][7]. The approach 

brought forth by [17] uses the same general principals. 

However, instead of using the standard client/server model, 

[17] uses migrating agents applied to standard quorums. As 

for the metrics evaluated in [17], they use a probability 

density function (equations (2) and (3)), similar to equation 

(1), of positive versus total number of votes, to calculate a 

confidence factor. 
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     where C is a pre-selected confidence interval and F(C) 

denotes the combined probabilities of all the members of C. 

The process of measurement works by continually 

collecting votes until such time as the uncertainty threshold 

(in the above example 0.9 ~ 90%), defined as values lying 

outside of the interval C, is reached. On a given site these 

values would tend to indicate that a certainty for either a 

positive or negative outcome of the votes has been reached 

by the quorum. Although [17]'s method enhances the 

general confidence in a quorum, the presented approach 

deals only with the quality of the host as measured prior to 

Figure 1. IQSA general architectural overview.
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quorum selection. Furthermore, an agent approach to data 

collection suffers in weakly connected networks. The 

measures presented in this work would also help agents 

find better hosts to collect data from, reducing the amount 

of failed visits an agent may encounter. 

III. IQSA ARCHITECTURE 

     This section explains the architecture and various 

modules used to achieve better quorum host selection, 

based on metrics measured by the mobile hosts pertaining 

to their state, and sent periodically to the base server (BS). 

We introduce the following metrics and variables to 

measure the performance, connectivity and health of a 

particular mobile host. 

Signal Strength: Defines the current signal strength of 

a MH, currently registered with a BS. In general, the 

signal strength can be expressed as a percentage of the 

maximum speed available on a particular wireless 

network. 

Host Priority: Depending on the current signal strength 

of the MH, a priority number is given to that MH. The 

higher the signal strength, the higher the priority. This 

can be set directly by the MH, or if selected as part of 

the quorum in a given BS, the BS may assign that MH 

a priority, based on measurements by the BS. 

Host Trend: We also define a derived metric based on 

the performance of a MH's signal strength with time. 

The trend of an MH's signal strength is calculated 

using a standard weighted linear regression, which 

shows the trend over time of the aggregates of both 

aforementioned metrics. 

     The BS on the other hand, once it receives this data from 

a MH, will classify it in a heap structure that allows the BS 

to pick the best performing MHs when a quorum is being 

built. The heap structure on the BS is constantly maintained 

as a max heap. Every new mobile host addition to the MH, 

will force the BS to restructure the max heap to take into 

account this new addition.  

Figure 1 provides more insight into the architecture, by 

showing how packets get arranged in the BS' max heap 

structure. The max heap keeps a record of all currently 

registered MHs with it, and orders the list, based on the 

metrics mentioned prior, from largest (most reliable host) to 

smallest (least reliable host). 

     The architecture also introduces the means to migrate 

MHs from one BS to another. Since the MH is essentially a 

mobile unit (cell phone, PDA, Laptop) with a moving user, 

for example, this user may travel through various BSs 

while going to work, and as such may travel and register 

with various base stations (similar again to the mobile 

phone network). So as not to clutter every BS with stale 

data, the MH will automatically be unregistered from a BS 

once that MH leaves its area of coverage. When a user 

registers with a new BS, the MH will automatically send 

the new BS the previous BS's address it was registered 

with.  

     This allows both BSs to communicate with each other 

and migrate the entry from the previous BS to the new BS. 

In some cases, mobile users may swing between two or 

more BSs, creating heavy migration traffic. In these cases, 

the MH may opt to remain registered with a particular BS 

as long as the cell that the user was registered in, is 

adjacent, in terms of area of coverage, to the the cell 

he/she's currently in. Figure 2 illustrates such a scenario, 

where MH7 migrates from a BS's coverage of cell C7 to a 

BS covering cell C6. The entry for MH7 is automatically 

migrated from C7 to C6 by communication between the 

BS's of both cells, as soon as the MH provides the new BS 

with the address of the previous BS.  

     The adjacency scenario can also be inferred from Figure 

2 as well, where C7 has adjacent cells C6, C5 and C4 

through which the BS, if present in any of the three, may 

use them as a bridge to communicate directly with C7, 

without re-registering with either C4, C5 or C6. 

Figure 2. IQSA architecture mobile host migration process. 

IV. THE ALGORITHMS 

     In this section, we discuss the high level algorithms that 

need to be implemented, in order to mimic the architecture 

discussed in the previous chapter. Although the core parts 

of it have been implemented in C++, this chapter presents 

the various modules in a more high level descriptive 

language. 

     Figure 3 shows the various high level parts and their 

high level interaction with one another. 

     The client module is responsible for serializing the data 

and sending it over the wire to the server. When a server 

receives a packet from a client, it stores and classifies the 
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client data into a max heap structure, based on the priority 

metric measured at the client end. The last module involves 

the inter-server data exchange system, which allows servers 

to exchange information about clients when they migrate 

from one server to the other and complete registration. 

Figure 3. IQSA high level modules interaction. 

A. Client Agent Procedures and Data Structures 

     The following is the Client data structure of metrics and 

measurements. 

type: HostData 
record 

SignalStrength : int 

Hostname : string 
PreviousBS : string 

Priority : float 

Trend : double 
Time : vector of double 

PrioSig : vector of double 
     Of the aforementioned variables, most should be 

familiar from previous chapters, with the notable 

exceptions of the Time vector structure and the PrioSig 

vector structure. The Time structure, as the name indicates, 

holds a timestamp for every measure of both the 

SignalStrength and Priority performed by the agent, at 

specific intervals metrics. Every time these two metrics are 

measured, a timestamp is added to the dynamic array. This 

also holds true for the first time the structure is being 

initialized as well. The PrioSig structure on the other hand, 

holds an aggregate weighted measure of both the Priority 

metric and SignalStrength metric. These two vector 

structures are used to store historical data, needed by the 

linear regression function, which measures the host's trend 

metric.

     When a MH first connects, it initializes all its metrics 

with either the most current measure taken (signal strength 

and priority), or to default values (trend metric). The trend 

metric is initially set to zero due to the unavailability of 

data to perform regression calculation. A minimum of two 

datum points are needed to perform a linear approximation, 

hence the greater than or equal to 2 condition in the 

calculateTrend procedure. Calculations of a weighted 

aggregate value combining both signal strength and priority 

metrics is also performed. The aggregation of these two 

metrics and its subsequent use in the linear approximation, 

would allow the environment to control which metric 

should have a higher importance, by assigning it a variable 

weight factor. The ensuing aggregate value is then 

associated with a timestamp in order to calculate the trend 

metric over time. This calculation is performed every time 

the client agent gets an updated measure on the basic 

metrics: signal strength and priority. The updates for the 

signal strength, priority metrics, and trend metric have been 

split into two procedures to make allow greater control over 

when and in which order these two procedures get called. 

Once all the data has been updated, the client serializes the 

host data and sends it over the wire to the BS. 

calculateTrend(PrioSig, Time) : 
     begin:

          if { sizeof(PrioSig)  2 } then 

               Linear A = CalculateLinearReg(sizeof(Time), 

PrioSig, Time); 

               return getSlopeOf(A); 

          else 

               return 0; 

     end;

calculateWeightedAggregate(SignalStrength, Priority) : 

     begin:

          signalWeight  signalImportanceFactor; 

          priorityWeight  priorityImportanceFactor; 

          return

(SignalStrength*signalWeight)+(Priority*priorityWeight); 

     end;

initialize(HostData) : 

     begin:

          SignalStrength = measured(SignalStrength);  

          Hostname  gethostbyname();  

          Priority  measured(Priority);  

          Time[]  push { time(now) }; 

          PrioSig[]  push { 

weightedLinearDist(SignalStrength, Priority) }; 

          Trend  calculateTrend(PrioSig, Time); 

     end;

updateMetrics(SignalStrength, Priority) : 

     begin:

          Time[]  push { time(now) }; 

          PrioSig[]  push { 

weightedLinearDist(SignalStrength, Priority) }; 

     end;
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updateTrend() : 

     begin:

          trend  calculateTrend(PrioSig, Time); 

     end;

B. Server Side Procedures 

     On the receiving end, is the base station, running a 

server listening for registration and update requests sent by 

MH agents. The BS is responsible for maintaining an 

organized max heap structure of all currently registered 

MHs that fall under its zone of coverage. Once a 

registration or update packet is received, the following 

procedures take place to insure the careful addition/update 

of that MH's information into the BS's heap structure.  

Step1: The BS would first check if the record for that MH 

is currently registered with it as a BS, if not the BS will 

retrieve that data from the last BS that MH was registered 

with and ask the previous BS to delete the entry of that MH 

in its heap. The BS will then send the MH its credentials to 

update its BS information and proceed to add the MH's 

record to its max heap structure. 

Step2: If the MH's record already exists then the BS will 

consider the incoming data as an update and proceed to 

search and update its heap structure with the new data sent 

by the MH agent. 

Step 3: The last case the server considers is when no 

previous BS record has been sent by the MH and no data 

for that MH has been found in the server's heap structure. 

In this case the server will assume that this is a first time 

sign on by a new client and proceed as outlined in step 1. 

insertMaxHeap( heapStruct[], HostData Element )  : 
     begin:

          if( Element.serverID neq serverID ) then

               migrateRecord ( Element.serverID, 

Element.HostID ); 

          else if ( position  searchForElement ( heapStruct[], 

Element )  -1 ) then

               updateElement ( heapStruct[], Element,position  

);

          else 

               heapStruct[]  push ( Element ); 

               buildHeap ( heapStruct [] ); 

               sortHeap ( heapStruct[], length[ heapStruct ] ); 

     end;

V. PERFORMANCE EVALUATION 

     The algorithm performance is measured in the standard 

Big O notation. Every essential part of the algorithm will be 

evaluated individually, and an aggregate performance 

measure will be derived from the parts. We first identify the 

following areas of the code that affect the performance of 

the algorithm, as presented in the previous section. We also 

distinguish between the preprocessing stage, which 

involves building and maintaining the heap structure, and 

the quorum selection process, which is a bounded function 

that depends on the size of the expected quorum. The 

amount of messages passed between the MH agent and the 

server are measured to insure that the least amount of 

needed messages are passed and to minimize network 

congestion problems that adversely affect the overall 

performance of the quorum process. 

     The performance of the heap building and sorting 

algorithms are well-known. Measures have been 

extensively detailed, so no formal proof will be given. 

Instead, only the final end result will be presented. Locating 

an element in the heap has linear performance )(nO .

Although better search performance can be achieved using 

more efficient algorithms, it is not the focus of this work to 

tackle this issue, and is left as a future improvement. 

However, it is worth mentioning that n is bounded by the 

limited amount of hosts a BS can handle. As such we can 

represent the search procedure as ))(max(MHO for a 

particular BS. 

     Taking the above performance measures into account, 

the following paragraph evaluates the performance of the 

main procedures that maintain and update the list of MHs 

currently registered with a particular BS.  

     Since this particular procedure involves code execution 

on two sites, a breakdown of the code execution on every 

site is measured, whereas network delays and other external 

factors have been ignored. The first step of the migration 

involves sending a request to a remote server, where a 

search and delete procedure is executed. The search 

procedure's performance is )(nO , with )1(O performance 

for deletion once that record is found. When a record is 

received by the current server, the MH attempts to register 

using the combined insert and sort operations of the max 

heap structure. This adds a performance execution overhead 

of ))(log.( 22 nnO , for a total combined worst case 

performance hit of ))(log.( 23 nnO , which executes in 

polynomial time. Identical performance can be expected of 

the insertMaxHeap procedure in the case of an element 

update. Generalizing this to m sites, would yield a worst 

case global performance described in Expression (1). 
m

k

nnO
0

23 ))(log.(    (1) 

     Ordinarily an insert operation on a heap data structure 

should be of the order ))(log(nO . However, due to the 

choice of the key (the Priority variable) chosen to sort the 

heap on, finding a host would require linear time instead, 
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based on the MH's identification string. This is one 

shortcoming that can be remedied in subsequent 

development of this architecture, and as mentioned prior, it 

is not the focus of this work to tackle all possible 

optimization aspects of the algorithm, but rather, to show 

that it is a viable architecture that can provide improved 

availability and reliability to epidemic quorum groups. 

     By selecting the best performing hosts from the max 

heap data structure to participate in an epidemic quorum, 

the BS insures that the probability of a process failure on 

the selected MH is kept to the minimum possible, based on 

the general state of the network. As such, going back to Eq. 

(1), we propose to see the effects of minimizing the process 

failure factor pf on the overall availability of the epidemic 

quorum. Earlier, [1] sets pf as a fixed value and measures 

availability based on the probabilities for vote repetitions 

and vote decisions. Whereas, the proposed mathematical 

model tackled here, measures how a variable pf affects the 

overall availability for discrete values of dec and rep.

     Appendix 1 tables and figures explain the mathematical 

results obtained, based on the mathematical framework 

presented in [1] for epidemic quorum availability 

measurement. The results also indicate that a minimum 

threshold should be respected when selecting MHs for 

quorums, below which, availability may suffer. This 

threshold would allow the MH selection procedure to set a 

cutoff point below which hosts would not be selected. 

     The results clearly show that based on the mathematical 

model presented in [1], the combination of a variable pf,

decision probability and repetition, although mainly 

affected by the probability of a quorum reaching a decision, 

clearly diminishes as the pf factor increases. Selecting MHs 

with low probabilities of failures would ultimately lead to a 

far more stable and available quorum system. The 

probability for reaching a quorum decision on the other 

hand, is not directly related to pf, but an indirect relation 

with the previous two factors may be inferred. Lesser 

available systems will most likely delay the outcome of the 

vote, if systems go off-line, forcing an increase in repetition 

cycles. Although the model does indicate that high 

availability is achieved, the convergence time to a 

consensus will increase with the amount of repetitions, 

leading to higher delays in up-to-date data acquisition. 

Table 4 shows the variance of pf with high probability of 

repetition. 

     Trivially, with higher vote repetition, in the worst case 

scenario, the time tvote it would take to create a quorum and 

reach a result can be expressed by equation (4): 

)max(

0

rep

n

repetitioncreatevote ttt  (4) 

     where trepetition would vary with each repeat round, 

depending, among other factors, on network conditions as 

well. The repetition factor is not only calculated based on 

process failure, but also assumes the ability of a quorum to 

reach a decision based on the amount of information 

available to that quorum. The model in this thesis deals 

with the process failures due to network outages, rather 

than quorum failures, and as such, the repetition time and 

vote time factors expressed in Eq. (4) can be minimized by 

selecting highly reliable hosts, thus reducing both tcreate, in 

the initial creation of the quorum, and trepeat when 

subsequent quorum votes need to be carried. 

     Theoretically, the model provides insight into the 

availability of epidemic quorums, but given the difficulty to 

model real world network failures due to its mathematical 

complexity, only live system tests can verify the viability of 

such a model. The author is confident that by applying the 

presented theoretical model, this will unequivocally have a 

positive result on the availability of epidemic quorums. 

Since no live model was made available at the time of 

writing, a simulation was constructed to portray the 

availability of an epidemic quorum, by providing MH 

performance results with a discrete MH failure model. 

VI. CONCLUSION 

     This work has presented an overview of the various 

mobile database models currently available, focusing 

mainly on the epidemic model, and more precisely on 

epidemic quorums. A novel approach to epidemic quorum 

selection based on an effort to minimize network 

disconnections, often experienced by wireless mobile hosts, 

was presented. The purpose of which, is to provide a more 

reliable quorum, with higher data availability. The 

classification of hosts according to measured and derived 

metrics, allows the model to be extended and incorporate 

other metrics which may be deemed important in later 

revisions, such as: database connection counts and 

performed transactions counts, to further refine the 

classification of mobile hosts. Although this primary study 

of the architecture was deemed satisfactory by its author, 

more work is needed to further refine the mathematical 

model and incorporate more complex network failure 

models that may further indicate the usefulness of this 

model. Work done in [6] and [7] can also be incorporated in 

the model to provide better quorum placement, minimizing 

network congestion and delays, instead of relying solely on 

traffic priority settings. 
One of the main points to focus on in future studies on 

this topic, would include, building historical track record of 

mobile hosts based on more elaborate regression models 

(such as a Bayesian regression model), rather than the 

simplistic linear model used herein. This would require that 

real performance data be made available to the system in 

order to allow the Bayes engine's learning process to 

evaluate its current state, based on measurements that 

reflect the reality of the system. The author also recognizes 

that much improvement should also be done on the 

algorithm itself, allowing for much better performance, 

especially in the area of host lookup, where a hash lookup 
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table may be constructed in order to minimize lookup 

times. All in all the studies and results provided herein 

show how important a role the network environment plays 

in the performance of quorums in general and epidemic 

quorums in particular. Although this is still a very recent 

area of interest and study in mobility, it is however 

receiving just attention, especially in the wake of the 

wireless revolution, where reliable connectivity is 

considered whimsical in comparison to its wired 

counterparts. 
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APPENDIX A. 

TABLE 1. AVAILABILITY CHART WITH DEC=0.6 AND REP=0 

Dec Rep

1 0

Pf Sum(Pf)

0 1.0000000000

0.1 0.9999999999

0.2 0.9999998976

0.3 0.9999940951

0.4 0.9998951424

0.5 0.9990234375

0.6 0.9939533824

0.7 0.9717524751

0.8 0.8926258176

0.9 0.6513215599

1 0.0000000000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
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TABLE 2. AVAILABILITY CHART WITH DEC=0.25 AND REP=0 

Dec Rep

0.6 0

Pf Sum(Pf)

0 0.6000000000

0.1 0.5999999999

0.2 0.5999999386

0.3 0.5999964571

0.4 0.5999370854

0.5 0.5994140625

0.6 0.5963720294

0.7 0.5830514851

0.8 0.5355754906

0.9 0.3907929359

1 0.0000000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.6000000000
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TABLE 3. AVAILABILITY CHART WITH DEC=0.25 AND REP=0 

Dec Rep

0.25 0

Pf Sum(Pf)

0 0.2500000000

0.1 0.2500000000

0.2 0.2499999744

0.3 0.2499985238

0.4 0.2499737856

0.5 0.2497558594

0.6 0.2484883456

0.7 0.2429381188

0.8 0.2231564544

0.9 0.1628303900

1 0.0000000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.2500000000
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A
v
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TABLE 4. AVAILABILITY CHART WITH DEC=0.25 AND REP=0.65 

Dec Rep

0.25 0.65

Pf Sum(Pf)

0 0.7142857143

0.1 0.7142857142

0.2 0.7142856411

0.3 0.7142814965

0.4 0.7142108160

0.5 0.7135881696

0.6 0.7099667017

0.7 0.6941089108

0.8 0.6375898697

0.9 0.4652296856

1 0.0000000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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Pf
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