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Abstract

The problem of finding the solution of partial differential equations (PDEys) plays a central role in modeling real world problems.
Over the past years, Multigrid solvers have showed their robustness over other techniques, due to its high convergence rate which
is independent of the problem size. For this reason, many attempts for exploiting the inherent parallelism of Multigrid have been
made to achieve the desired efficiency and scalability of the method. Yet, most efforts fail in this respect due to many factors (time,
resources) governed by software implementations. In this paper, we present a hardware implementation of the V-cycle Multigrid
method for finding the solution of a 2D-Poisson equation. We use Handel-C to implement our hardware design, which we map onto
available field programmable gate arrays (FPGAs). We analyze the implementation performance using the FPGA vendor’s tools. We
demonstrate the robustness of Multigrid over other similar iterative solvers, such as Jacobi and successive over relaxation (SOR),
in both hardware and software. We compare our findings with a C + 4 version of each algorithm. The obtained results show better
performance when compared to existing software versions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Physical, chemical and biological phenomena are modeled using partial differential equations (PDEs). Interpreting
and solving (PDEs) is the key for understanding the behavior of the modeled system. The broad field of modeling
real systems has drawn the researchers’ attention for designing efficient algorithms for solving (PDEs). The Multigrid
method has been shown to be the fastest method due to its high convergence rate which is independent of the problem
size. However, the computation of such solvers is complex and time consuming. Many attempts for exploiting the
inherent parallelism of Multigrid have been made to achieve the desired efficiency and scalability of the method. Yet,
most efforts fail in this respect due to many factors (time and resources) governed by software implementations upon
parallelizing the algorithm.

Over the past years, researchers have benefited from the continuous advances in hardware devices and software tools to
accelerate the computation of complex problems [3]. At early stages, algorithms were designed and implemented to run
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on a general purpose processor (software). Techniques for optimizing and parallelizing the algorithm, when possible,
were then devised to achieve better performance. As applications get more complex, the performance provided by
processors degenerates. A better performance could be achieved using a dedicated hardware where the algorithm is
digitally mapped onto a silicon chip, integrated circuit (/C). Though it provides better performance than the processor
technology, the /C technology (hardware) lacks flexibility.

In the last decade, a new computing paradigm, reconfigurable computing (RC), has emerged [15]. RC-systems over-
come the limitations of the processor and the /C technology. RC-systems benefit from the flexibility offered by software
and the performance offered by hardware [22,15]. RC has successfully accelerated a wide variety of applications in-
cluding cryptography and signal processing [21]. This achievement requires a reconfigurable hardware, such as field
programmable gate array FPGA, and a software design environment that aids in the creation of configurations for the
reconfigurable hardware [15].

In this paper, we present a hardware implementation of the V-cycle Multigrid algorithm for the solution of a
2D-Poisson equation using different classes of FPGAs: Xilinx Virtex Il Pro, Altera Stratix and Spartan3L which is
embedded on the RC10 board from Celoxica. We use Handel-C, a higher-level hardware design language, to code
our design which is analyzed, synthesized, and placed and routed using the FPGAs proprietary software (DK De-
sign Suite, Xilinx ISE 8.1i and Quartus II 5.1). We demonstrate the robustness of the Multigrid algorithm over
the Jacobi and the SOR algorithms, in both hardware and software. We compare our implementation results with
a software version of each algorithm, since there are no hardware implementations of MG, Jacobi and SOR in
the literature.

The rest of the paper is organized as follows: in Sections 2 and 3, we present a general overview of Multigrid solvers
and RC, respectively. In Section 4, we describe our hardware implementation of the V-cycle MG for the solution of a
2D-Poisson equation. Then, the implementation results are presented in Section 5, where we: (a) report MG results,
(b) compare these results with a software version written in C + + and running on a general purpose processor, (c)
report Jacobi and SOR hardware implementation results and compare them with their software versions, (d) compare
the results obtained in (a) and (c) show how MG outperforms Jacobi and SOR, in both hardware and software versions.
Section 6 concludes the work and addresses possible directions to future work.

2. Multigrid solvers

Multigrid methods are fast linear iterative solvers used for finding the optimal solution of a particular class of PDE:s.
Similar to classical iterative methods (Jacobi, successive over relaxation (SOR), Gauss Seidel, generalized minimal
residual method (GMRES), bi-conjugate gradient, etc.), an MG method ‘starts with an approximate solution to the
differential equation; and in each iteration, the difference between the approximate solution and the exact solution is
made smaller’ [9].

In general, the error resulting from the exact and approximate solution will have components of different wave-
lengths: high-frequency components and low-frequency components [9]. Classical iterative methods reduce high-
frequency/oscillatory components of error rapidly, but reduce low-frequency/smooth components of error much more
slowly [39].

The Multigrid strategy overcomes the weakness of classical iterative solvers by observing that components that
appear smooth on fine grid may appear oscillatory when sampled on coarser grid [10]. The high-frequency components
of the error are reduced by applying any of the classical iterative methods. The low-frequency components of error are
reduced by a coarse-grid correction procedure [12,39].

A Multigrid cycle starts by applying any classical iterative method (Jacobi, Gauss Seidel or SOR) to find an approx-
imate solution for the system. The residual operator is then applied to find the difference between the actual solution
and the approximate solution. The result of this operator measures the goodness of the approximation. Since it is easier
to solve a problem with less number of unknowns [11,27], a special operator-restriction—for mapping the residual to
a coarser grid (less number of unknowns)—is applied for several iterations until the scheme reaches the bottom of the
grid hierarchy. Then, the coarse grid solver operator is applied to find the error on the coarsest grid. Afterwards, the
interpolation operator is applied to map the coarse grid correction to the next finer grid in an attempt to improve the
approximate solution. This procedure is applied until the top grid level is reached giving a solution with residual zero.
Finishing with several iterations back to the finest grid gives a so-called V-cycle Multigrid [12,19,25] (Fig. 1).
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Fig. 1. V-cycle, W-cycle, and full-cycle MG.

2.1. Multigrid components

A Multigrid algorithm uses five algorithmic components: smoother/relaxation, residual computation, restriction,
coarse grid solver, interpolation.

Relaxation/smoother: This component is responsible for generating an approximate solution by reducing—
smoothing/relaxing—the high-frequency error component of the solution imposed upon approximating the solution.

The Gauss—Seidel method can be used in both the pre-smoothing and the post-smoothing steps.

When used in the post-smoothing and pre-smoothing steps in the Multigrid method, the solution is in the form

1 2
wit =G i+t e RS ), (1

where i and j are the row and column indices of the grid [5].

Residual computation: Let u be an approximate solution to the exact solution u, the residual is defined as

= fu — A" = Apey, )

where ¢ = u — 1 is the error.

The residual must be computed before it can be restricted to the coarser grid.

Restriction: This component is responsible for transporting the residual of the fine grid to the coarser grid using:
rg =1 hH rn, where H = 2h is the mesh size on a finer grid, ry is the prolongation of coarser-grid residual to the finer
grid, / hH is a prolongation, from 7 — H (bilinear in our case).

Course grid solver: This operator, often called coarse-grid correction is performed on the coarse grid using

u Y = ut o+ Ien. 3)

Applying this operator along with the smoothing operator has a substantial effect on the reduction of the residual for
all frequencies. However, the coarse grid solver is applied only on the coarsest grid making the cost of this operator
negligible to the overall computational cost of the MG method [42].

Interpolation/prolongation: Transports the correction obtained on the coarser grid to the fine grid using: r, =1 Zrh.

The simplest Multigrid algorithm is based on a two-grid improvement scheme: fine grid and coarse grid. The fine
grid, Q", with N = 2! 4 2 points and the coarse grid, Q? , with N = 2/~! 4+ 2 points.

In this work, we implement the V-cycle Multigrid to find the solution of a 2D-Poisson equation. Briefly, the V-cycle
Multigrid algorithm starts with an initial approximation to the expected solution, goes down to the coarsest grid, and
then goes back to the finest grid; as shown in Fig. 2 [12].

2.2. Multigrid solution of Poisson’s equation in 2D

The V-cycle Multigrid algorithm is applied to find the solution to a 2D-Poisson equation in the form

Q%u(x, y) Q%u(x, y)
ox2 + 0y? = Jr X

or in the form VZu = f when written in vector notation [32].
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Fig. 2. V-cycle MG.
3. Reconfigurable computing

Today, it becomes possible to benefit from the advantages of both software and hardware with the presence of the RC
paradigm [15]. Actually, the first idea to fill the gap between the two computing approaches, software and hardware,
goes back to the 1960s when Gerald Estrin proposed the concept of RC [37].

The basic idea of RC is the ‘ability to perform certain computations in hardware to increase the performance, while
retaining much of the flexibility of a software solution’ [15].

RC systems can be either of fine-grained or of coarse-grained architecture. An FPGA is a fine-grained reconfigurable
unit while a reconfigurable array processor is a coarse-grained reconfigurable unit. In the fine-grained architecture each
bit can be configured; while in the coarse-grained architecture the operations and the interconnection of each processor
can be configured. Example of a coarse-grained system is the MorphoSys which is intended for accelerating data path
applications by combining a general purpose micro-processor and an array of coarse grained reconfigurable cells [2].

The realization of the RC paradigm is made possible by the presence of programmable hardware such as large scale
complex programmable logic devices (CPLDs) and FPGAs [34]. RC involves the modification of the logic within the
programmable device to suit the application in hand.

3.1. Hardware compilation

There are certain procedures to be followed before implementing a design on an FPGA. First, the user should prepare
his/her design by using either a schema editor or by using one of the hardware description languages (HDLs) such
as VHDL (very high scale IC HDL) and Verilog. With schema editors, the designer draws his/her design by choosing
from the variety of available components (multiplexers, adders, resistors, etc.) and connect them by drawing wires
between them. A number of companies supply schema editors where the designer can drag and drop symbols into a
design, and clearly annotate each component [36]. Schematic design is shown to be simple and easy for relatively small
designs. However, the emergence of big and complex designs has substantially decreased the popularity of schematic
design while increased the popularity of HDL design. Using an HDL, the designer has the choice of designing either
the structure or the behavior of his/her design. Both VHDL and Verilog support structural and behavioral descriptions
of the design at different levels of abstractions. In structural design, a detailed description of the system’s components,
sub-components and their interconnects are specified. The system will appear as a collection of gates and interconnects
[36]. Though it has a great advantage of having an optimized design, structural presentation becomes hard, as the
complexity of the system increases. In behavioral design, the system is considered as a black box with inputs and
outputs only, without paying attention to its internal structure [23]. In other words, the system is described in terms of
how it behaves rather than in terms of its components and the interconnection between them. Though it requires more
effort, structural representation is more advantageous than the behavioral representation in the sense that the designer
can specify the information at the gate-level allowing optimal use of the chip area [38]. It is possible to have more than
one structural representation for the same behavioral program.

Noting that modern chips are too complex to be designed using the schematic approach, we will choose the HDL
instead of the schematic approach to describe our designs.
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Fig. 3. FPGA design flow.

Whether the designer uses a schematic editor or an HDL, the design is fed to an electronic design automation (EDA)
tool to be translated to a netlist. The netlist can then be fitted on the FPGA using a process called place and route
(PAR), usually completed by the FPGA vendors’ tools. Then the user has to validate the PAR results by timing analysis,
simulation and other verification methodologies. Once the validation process is complete, the binary file generated is
used to (re)configure the FPGA device. More about this process is found in the coming sections.

Implementing a logic design on an FPGA is depicted in the figure below. The above process consumes a remarkable
amount of time; this is due to the design that the user should provide using HDL, most probably VHDL or Verilog.
The complexity of designing in HDL; which have been compared to the equivalent of assembly language; is overcome
by raising the abstraction level of the design; this move is achieved by a number of companies such as Celoxica,
Cadence and Synopsys. These companies are offering higher level languages with concurrency models to allow faster
design cycles for FPGAs than using traditional HDLs. Examples of higher level languages are Handel-C, SystemC, and
Superlog [28,36] (Fig. 3).

3.2. Handel-C language

Handel-C is a high level language for the implementation of algorithms on hardware. It compiles program written
in a C-like syntax with additional constructs for exploiting parallelism [36]. The Handel-C compiler comes packaged
with the Celoxica DK design suite which also includes functions and memory controller for accessing the external
memory on the FPGA. A big advantage, compared to other C to FPGA tools, is that Handel-C targets hardware directly,
and provides a few hardware optimizing features [13]. In contrast to other HDLs, such as VHDL, Handel-C does not
support gate-level optimization. As a result, a Handel-C design uses more resources on an FPGA than a VHDL design
and usually takes more time to execute. In the following subsections, we describe Handel-C features’ that we have used
in our design [13,29].

3.2.1. Types and type operator

Almost all ANSI-C types are supported in Handel-C with the exception of float and double. Yet, floating point
arithmetic can still be performed using the floating point library provided by Celoxica. Handel-C offers additional
types for creating hardware components such as memory, ports, buses and wires. Handel-C variables can only be
initialized if they are global or if declared as static or const. Handel-C types are not limited to width since when
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Table 1
Effect of using ‘par’ construct

par
a=1; {
b=1; a=1
c=1; b=1
c=1
}
No. of clock cycles =3 No. of clock cycles = 1
Handel-C
Source
Code

Compile for Compile to Gate

Estimation

Simulator Netlist

Simulation Place and H Timing
Cycle Count and Debug Route Analysis and
Gate Usage

Program
FPGA

Fig. 4. Handel-C targets.

targeting hardware, there is no need to be tied to a certain width. Variables can be of different widths, thus minimizing
the hardware usage.

3.2.2. par Statement

The notion of time in Handel-C is fundamental. Each assignment happens in exactly one clock cycle, everything
else is ‘free’ [13].

An essential feature in Handel-C is the ‘par’ construct which executes instructions in parallel. Table 1 shows the
effect of using ‘par’.

3.2.3. Handel-C targets

Handel-C supports two targets. The first is a simulator that allows development and testing of code without the need
to use hardware, P1 in Fig. 4. The second is the synthesis of a netlist for input to PAR tools which are provided by the
FPGA’s vendors, P2 in Fig. 4.

The remaining of this section describes the phases involved in P2, as it is clear from P1 that we can test and debug
our design when compiled for simulation.
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The flow of the second target involves the following steps:

Compile to netlist: The input to this phase is the source code. A synthesis engine, usually provided by the FPGA
vendor, translates the original behavioral design into gates and flip flops. The resultant file is called the netlist. Generally,
the netlist is in the electronic design interchange format (EDIF). An estimate of the logic utilization can be obtained
from this phase.

PAR: The input to this phase is the EDIF file generated from the previous phase; i.e. after synthesis. All the gates
and flip flops in the netlist are physically placed and mapped to the FPGA resources. The FPGA vendor tool should be
used to PAR the design. All design information regarding timing, chip area and resources utilization are generated and
controlled for optimization at this phase.

Programming and configuring the FPGA: After synthesis and PAR, a binary file will be ready to be downloaded into
the FPGA chip [16,31].

3.3. Field programmable gate arrays

An FPGA is a programmable digital logic chip. It consists of arrays of logic blocks with an interconnection network
of wires. Both the logic blocks and the interconnects can be programmed by the designer so that the FPGA can perform
whatever logical function is needed. Generally, the internal components of an FPGA can communicate with the outside
world through the input/output blocks (IOB).

The building/logic blocks are the basic elements of an FPGA. Each of these blocks is configured to perform a logic
function. The interconnection between the logic blocks is provided by the channels of wiring segments of varying
lengths [14]. The switching elements are used to determine the choice of active logic modules and their interconnects.
The designer can activate or deactivate these elements to suite the requirement of the application in hand [26].

The architecture of an FPGA can be classified according to the size and flexibility of the logic cell as well as to the
structure of the routing scheme [30]. The four basic architectures are: symmetrical array, row-based, fine grain cellular
architecture (sea-of-gates), and complex or hierarchical PLD.

3.3.1. Reconfigurability of FPGA

FPGA reconfiguration can be either static, semi-static or dynamic. The dynamic reconfiguration, also known as run-
time reconfiguration, is the most powerful form since a dynamically reconfigurable FPGA can be programmed/modified
on-the-fly while the system is operating [4]. Dynamically reconfigurable FPGA may be either partially reconfig-
ured (local run time reconfiguration); where a portion of the FPGA continues running while the other portion is
being reconfigured or programmed in a full reconfiguration (global run time reconfiguration). In this case, all the
system is configured and the intermediate results are stored in an external storage until the configured functions
run [33].

4. Hardware implementation of V-cycle MG

In recent years, many efforts have been made to develop an efficient, scalable and robust implementation of
MG. Two major approaches were involved in such development. The first one is implementing the algorithm to
run on a general purpose processor; the so-called software implementation. The second approach is implementing
it on a dedicated graphics rendering device called graphics processing unit GPU. More about GPUs can be found
in [8,24]. A number of PDE solvers have been mapped to GPUs, including fast Fourier transform (FFT), conju-
gate gradients (CG), and Multigrid. Despite the significant performance that was achieved for these solvers [8,24],
our main concern in this paper is to show the superiority of implementing MG on FPGA over running it on a
general purpose processor. Available software packages have been implemented in C, Fortran-77, Java and other
languages, where parallelized versions of these packages require inter-processor communication standards such as
message passing interface (MPI) [6,20,22,35]. Each of these packages attempt to achieve an efficient and a scal-
able version of the algorithm by compromising between the accuracy of the solution and the speed of realizing
the solution.

The V-cycle MG, Jacobi, and SOR algorithms have been designed, implemented and simulated using Handel-C.
We have preferred the implementation of Jacobi and SOR over other available iterative solvers since these meth-
ods’, (Jacobi and SOR) implementation style is the closest to MG and considered to belong to the same gener-
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a[i][j]=FloatUnpackFromInt32(FloatPackInInt32(a[i][j])

+FloatPackInInt(v[i][j])
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macro proc Correct()

{
i=1;
par (i=1;i <=L;i++)
{i=1
dof
a[i][j]=FloatUnpackFromInt32(FloatPackInInt32(a[i][j])+FloatPackInInt32(v[i][j])
i+
} while(j<=L);
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i=1 j afillil=afilil+Viil

parallel tasks
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Fig. 5. MG correct operator, illustrating the effect of using par construct: (6a), (6b), (6¢c), and (6d) shows sequential code, flowcharts, parallel code
and combined flowchart/concurrent process model, respectively. The dots represent replicated instances in (d). Dashed lines show the parallel tasks.

ation as MG [41,7]. Moreover, we wanted to prove that even when implemented in hardware, MG outperforms
SOR and Jacobi in certain problems. We have targeted a Xilinx Virtex Il Pro FPGA, an Altera Stratix FPGA, and
an RCI0 board from Celoxica. The tools provided by the device’s vendors were used to synthesize and PAR the
design [1,13,40].

Finding the solution to PDEs using either of the aforementioned techniques (MG, Jacobi, SOR) requires floating
point arithmetic operations which are (1) far more complex and (2) consume more area than fixed point operations.
For this reason, Handel-C does not support floating point type. Yet, floating point arithmetic can be performed using
the Pipelined Floating Point Library provided in the Platform Developer’s Kit.

An unexpected crash in the Handel-C simulator persists whenever the number of floating point arithmetic operations
exceeds four. We were notified, by Celoxica people, that a fixed version of the Handel-C simulator will be available in a
future release of DK. The only possible way to avoid the simulator’s failure, in its current version, was to convert/Unpack
the floating point numbers to integers and perform integer arithmetic on the obtained unpacked numbers. Though it
costs more logic to be generated, the integer operations on the unpacked floating point numbers have a minor effect on
the total number of the design’s clock cycles.

The Multigrid method can be parallelized by parallelizing each of its components; i.e., smoother, coarse grid solver,
restriction and prolongation. Each of these components is parallelized by using the Handel-C construct ‘par’. This
is used whenever it was possible to execute more than one instruction in parallel without affecting the logic of the
source code. Figs. 5 and 6 show the two MG operators ‘restrict residual’ and ‘correct’. The traditional way of executing
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macro proc Restrict_Residual()
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par {
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I R[i][j}=fFactor*opREsult St
}
. «es }While (J<=L2);
}
&l >
B/

Fig. 6. MG restrict residual operator, illustrating the effect of using par construct: (7a), (7b), (7¢) and (7d) shows sequential code, flow charts, parallel
code and combined flow chart/concurrent process model, respectively. The dots represent replicated instances in (d). Dashed lines show the parallel
tasks.

instructions on a GPP is shown in the first section, while the second section shows the combined flowchart/concurrent
process model of our design. A snapshot of the parallel version of the ‘smoother’, ‘find residual’ and ‘prolongate’
components is shown in Fig. 7. Their implementation style is very similar to that of ‘restrict residual’ and ‘correct’
operators.

Both Jacobi and SOR methods have been parallelized in the same way, i.e., using the par construct whenever possible.
The results obtained show: (a) The robustness of MG algorithm over Jacobi and SOR algorithm in both hardware and
software implementations. (b) A substantial improvement in the MG, Jacobi, and SOR performance when compared
to the traditional way of executing instructions on a GPP.
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Table 2

Execution time and max frequency for different problem sizes

Mesh size Execution time Fmax
8x8 0.000063 159.74
16 x 16 0.00026 153.52
32 x 32 0.00118 136.15
64 x 64 0.00555 115.97
128 x 128 0.031 83.91
256 x 256 0.188 54.60
512 x 512 1.308 31.45
1024 x 1024 9.3 17.60
2048 x 2048 70.97 9.28

5. Experimental results

The Handel-C simulator along with the FPGA vendor’s tools were used to obtain the hardware implementation
results. We have chosen C + + to design and code a software version of the algorithms which we compiled using
Microsoft Visual Studio.Net.

All the test cases were carried out on a Pentium (M) processor 2.0 GHz, 1.99 GB of RAM.

The obtained results are based on the following criteria:

e Speed of convergence: The time it takes the method of choice to find the solution to the PDE in hand. In another
word, it is the time needed to execute MG, Jacobi, or SOR algorithm. In our hardware implementation, the speed of
convergence is measured using the clock cycles of the design divided by the frequency at which the design operates
at. The first parameter is found using the simulator while the second is found using the timing analysis report which
is generated using the FPGA vendor’s tool.

e Accuracy of the solution: The convergence of each algorithm is greatly dependent on the accuracy of the solution.
The increase in the value of the accuracy results in less computational time and logic utilization. Meaning that,
more time and logic are needed for more accurate solution (decrease in the value of the accuracy: high accuracy);
while the method terminates faster when a non-accurate solution is needed (increase in the value of the accuracy:
low accuracy). Referring to the above criterion (speed of convergence), we can say that increasing the value of the
accuracy will speed up the convergence of the algorithm.

e chip-area: This performance criterion measures the number of occupied slices on the FPGA on which the design is
implemented. The number of occupied slices is generated using the FPGA vendor’s PAR tool.

We compare the timing performance between our hardware implementations of Multigrid, Jacobi, SOR and our C 4 +
software version of the same algorithms on GPPs.
The following selections were used for all Multigrid performance tests:

Restriction: full weighting.

Interpolation: bilinear.

Number of smoothing steps.

Smoother used: Gauss—Seidel.

Accuracy: 0.001 for all Handel-C test cases and C 4 + test cases up to problem size 256 x 256.

As for SOR performance tests, the over-relaxation parameters, omega, is set to be 1.5.

The V-cycle MG execution time when targeting Virtex II Pro FPGA, for different problem sizes, along with the
maximum frequency at which each design operates at are shown in Table 2. The execution time is calculated using:
No. of clock cycles/Max. Frequency.

Fig. 8 shows the results of comparing the execution time when running our C + + version of the V-cycle Multigrid
algorithm and the proposed Handel-C version. The Multigrid algorithm is parallelizable in nature, hardware imple-
mentation can directly exploit such parallelism to accelerate the algorithm. Such easiness in the parallelization allows
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Fig. 8. MG execution time results in both versions, Handel-C and C + +.

Table 3
Required accuracy of the solution for C + + and Handel-C test cases, and the designs speedup
Mesh size Accuracy Speedup

C++ Handel-C MG SOR Jacobi
8x8 0.001 0.001 142.86 1.758 223.81
16 x 16 0.001 0.001 185.59 188 56.21
32 x 32 0.001 0.001 119.23 6.706 5.68
64 x 64 0.001 0.001 58.56 5.69 2.89
128 x 128 0.001 0.001 20.77 1.514 1.41
256 x 256 1 0.001 5.25 1.43 2.29
512 x 512 1.1 0.001 2.92 3.03 2.39
1024 x 1024 1.3 0.001 1.58 2.58 0.75
2048 x 2048 2 0.001 1.14 3.37 1.39

us to reach a problem size of 2048 x 2048 with an accurate solution as needed. Such superiority of the hardware
implementation over the software implementation is clear in Fig. 8. Looking back at Figs. 5 and 6, one can expect the
number of clock cycles of the hardware version to be less than that of the software version; hence, improving the speed
of convergence of the algorithm. However, for a problem size greater than 128 x 128, it becomes difficult to measure
the execution time of the software (C + +) version with the same accuracy of 0.001. At that time, our concern was
to force our C + + version of MG to converge at any price, otherwise it will not converge. This was only possible
by sacrificing with the accuracy of the solution; where we had to gradually increase this factor until we reached an
accuracy of 2.0 for a problem size of 2048 x 2048, in contrast to an accuracy of 0.001 for a problem size of 8§ x 8. On
the other hand, Handel-C results were independent from the accuracy of the solution. The accuracy was constant all
the way from a problem size of 8§ x 8 to 2048 x 2048. The degeneration in the speedup is indicated in (b).

As mentioned before, a number of MG software packages are available and could have been used in our comparison
instead of designing another software version. The point we wanted to raise in this work is that in its simplest form, a
hardware implementation of a computationally intensive algorithm, such as (MG), can outperform a software imple-
mentation of the same form. The hardware version could deal with a problem size of 2048 x 2048, while the software
version failed at 256 x 256. It is important to note that these results are based on our implementations and findings
and do not by any way imply that the maximum size of the problem to be solved using any of the available software
versions is necessary 256 x 256.

In Table 3 we draw a comparison between the accuracy of the solution for each of the C 4+ + and Handel-C test
cases. The speedup of the design is calculated as the ratio of execution time (C + +)/execution time (Handel-C). As
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Fig. 10. SOR execution time results in both versions, Handel-C and C + +-.

the table shows, the speedup of the designs degenerates for problem sizes between 8 x 8 and 128 x 128 since the same
value of accuracy is kept for the C 4+ + and Handel-C versions where the value of the numerator (C 4 4 execution
time) and the denominator (Handel-C execution time) are not increasing in the same order. As for problem size greater
than 128 x 128, the increase in the value of the accuracy (low accuracy) in the C 4 + version only has decreased the
expected speedup.

The superiority of the hardware implementation over the software implementation for Jacobi and SOR is shown in
Figs. 9 and 10. This observation demonstrates the ability of realizing an accelerated version of the algorithm when
implemented on hardware (Fig. 11).

Tables 4-6 show, respectively, the Virtex II Pro (2vp7{f672-7), Spartan3L(3s1500Ilfg320-4) and Altera Stratix
(ep1s10f484c5) FPGA synthesis results for different problem sizes in MG, SOR, and Jacobi. When targeting Xil-
inx Virtex Il Pro FPGA, the largest possible problem size that we could achieve was 2048 x 2048, where 99% of the
slices were utilized. Meanwhile, the largest possible problem size was 512 x 512 when targeting Spartan3L FPGA.
As for the third targeted FPGA which has a different architecture than that of the first two FPGAs, we report different
metrics for different problem sizes up to 2048 x 2048. A problem size of 4096 x 4096 was successfully synthesized
and placed and routed for this FPGA.
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Table 4

Execution time (seconds)

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00
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Fig. 11. Robustness of MG over Jacobi and SOR.

Xilinx Virtex II Pro synthesis results using Xilinx ISE

Mesh size

Mesh size Number of occupied slices Total equivalent gate count
MG SOR Jacobi MG SOR Jacobi

8x8 264 128 146 5990 2918 3229
16 x 16 295 136 159 6497 3033 3397
32 x32 415 219 299 9321 4807 5090
64 x 64 536 265 380 12 376 5978 7849
128 x 128 789 315 499 18 107 7125 11 864
256 x 256 1247 610 839 29 244 14 538 17 864
512 x 512 2125 1098 1286 51115 23 012 23 649
1024 x 1024 3875 1601 1890 94 484 31 848 31327
2048 x 2048 4926 2289 3198 180 879 53 476 35 839
Table 5
Spartan3L synthesis results using Xilinx ISE
Mesh size Number of occupied slices Total equivalent gate count

MG SOR Jacobi MG SOR Jacobi
8x8 687 302 416 355687 279010 356109
16 x 16 717 499 599 356163 281001 357631
32 x32 769 589 7326 357224 282997 359989
64 x 64 832 745 9010 358921 284000 342768
128 x 128 1049 877 1198 361956 285872 389999
256 x 256 1507 1201 1665 367673 297134 397987
512 x 512 3187 2010 2810 375293 299 858 498 030
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Table 6
Altera Stratix synthesis results using Quartus I1

Mesh size Total logic elements LE usage by no. of LUT inputs Total registers
MG SOR Jacobi MG SOR Jacobi MG SOR Jacobi

8x8 725 519 610 402 250 354 228 120 189
16 x 16 818 601 709 554 310 401 265 155 232
32 x 32 925 810 880 625 501 556 301 199 300
64 x 64 1068 999 1001 709 637 681 360 280 385
128 x 128 1307 1274 1286 841 720 801 467 347 390
256 x 256 1739 1510 1590 1070 890 950 670 498 476
512 x 512 2653 2286 2589 1357 1087 1101 816 501 560
1024 x 1024 3491 2901 3342 1809 1450 1499 1002 569 689
2048 x 2048 4501 3286 3927 2201 1798 1941 482 640 819

6. Conclusions and future work

In this paper, we have presented a hardware implementation of the V-cycle Multigrid method for solving the Pois-
son equation in two dimensions. Handel-C hardware compiler is used to code and implement our designs (MG,
Jacobi, and SOR) and map them onto high-performance FPGAs, such as, Virtex Il Pro, Altera Stratix, and Spar-
tan3L which is embedded in the RC10 FPGA-based system from Celoxica. The implementation performance is
analyzed using the FPGAs vendors’ proprietary software. Moreover, we compare our implementation results with
available software version results running on general purpose processors and written in C 4+ +. The obtained re-
sults have demonstrated that (1) MG algorithm outperforms the Jacobi and the SOR algorithms, on both hard-
ware and software and (2) MG on hardware outperforms MG on GPP, where a speedup of 142.86 was achieved
for a problem size of 8 x 8, whereas a speedup of 1.14 was achieved for 2048 x 2048. This degeneration of
the speedup is due to the increase of the value of the required accuracy of the solution. Possible future direc-
tions include realizing a pipelined version of the algorithm, moving to a lower-level HDL such as VHDL, mapping
the algorithm into a coarse grain reconfigurable systems (e.g., MorphoSys) [17], and benefiting from the advan-
tages of formal modeling [18]. We can also extend the benefit of MG by implementing the W-cycle algorithm and
the Algebraic MG.
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