Haraty & Zeitunlian

30/10/07 12:47 Page 43

AP ISESCO $Science and Technology Vision g

Volume 3 - Number 4 - November 2007 (43-50)

—p—

\,w»ﬂu.

\

,
s N
fsco g

Abstract

ith the advancement of

Internet technology,
securing information systems
from electronic attacks have
become a significant concern.
With all the preventive me-
thods, malicious users still
find new methods that over-
come the system security,
and access and modify the
sensitive information. To make
the process of damage asses-
sment and recovery fast and
efficient and in order not to
scan the whole log, resear-

Damage Assessment and
Recovery from Malicious
Transactions Using Data
Dependency for Defensive
Information Warfare

Ramzi A. Haraty and Arda Zeitunlian

Lebanese American University
Division of Computer Science and Mathematics
Beirut, Lebanon

different damage assessment
and recovery algorithms. Since
even segmenting the log into
clusters may not solve the
problem, as clusters/segments
may grow to be humongous
in size, this is in case of high
data/transaction dependency,
we suggest a method for seg-
menting the log into clusters
and its sub-clusters; i.e, seg-
menting the cluster; based on
exact data dependency [12],
into sub-clusters; based on
two different criteria: number
of data items or space occu-
pied. In this work, we also

chers have proposed different
methods for segmenting the log, and accordingly presented

present damage assessment
and recovery algorithms, and show the performance results.

1. Introduction

Nowadays, the productivity of any organization depends
on the information it shares with and protects from the rest of
the world. The disadvantage of this connectivity is that it
gives way for malicious users to access and possibly damage
the sensitive information. In spite of different defensive and
security measures as firewalls, authentication, access
controls, data encryption, still hackers/intruders continuously
find new ways to overcome the system security.

During a system failure, the effects of all write operations
of non-committed transactions that are already written into
the stable database are undone. The effects of all write opera-
tions of committed transactions, which are not in the stable
database, are redone, which and the log is purged [13] [14]
[20] [21].

This approach does not work with electronic attacks, since
the system treats the attacker as any other valid transaction
and makes the update permanent. Whenever an electronic
attack is detected, all the updates of the attacker must be
undone including the updates of the transactions that directly
or indirectly read from the attacker. Then, these valid transac-
tions must be re-executed to return the database to a consis-
tent state. For this reason, the log is modified to store the
read-from relationship as well; and not allow purging.

The disadvantage of adding the read from relationships
and not allowing purging, is that, the log grows in size, and if
an attack is found that has occurred for example a month ago,

the damage assessment and recovery will take significant
amount of time; to undo and then redo all the transactions that
have directly or indirectly read-from the attacking transaction,
thus; leading to denial-of-service, which might be the attackers
aim. Therefore, developing an efficient algorithm to recover
the system from an electronic attack is quite essential, at the
same time maintaining the system integrity and availability.

During recent years, there have been many researches in
this area. In [2], Jajodia et al have discussed recovery issues
for defensive information warfare. Ammann et al. [7] used
color scheme for identifying the damaged and corrupted data,
while the database remains available during the recovery pro-
cess. In [11] Liu et al. have presented algorithms that re-write
transaction history by moving the attacking transaction and
all effected transactions.

Later researchers proposed clustering the log using trans-
action dependency approach for accessing only one of the
clusters during damage assessment. Then instead of traditio-
nal transaction dependency researchers have used data
dependency.

Ragothaman and Panda in [19] have proposed a simpler
model to build the log by simply implementing limitations to
clusters; like number of committed transactions, the size of
clusters, or a time window for clusters. This logging techni-
que was used, in [20], where the already segmented log is
segment based on transaction dependency to achieve much
faster damage assessment and hence recovery.

43

o

Haraty & Zeitunlian

30/10/07 12:47 Page 44

—p—

= Ramzi A. Haraty and Arda Zeitunlian /ISESCO Science and Technology Vision - Volume 3, Number 4 (November 2007) (4350) o

To minimize the I/O access, researches have proposed dif-
ferent methods. In [22] Panda and Lala, damage assessment
time was reduced by adding auxiliary data structures, that
keeps track of the transaction dependency relationships. In
[25], the authors suggested using matrices for damage assess-
ment, while, in [24], the model proposed is based on the
knowledge of data relationships that is mined during normal
database use.

In our work, we present an algorithm to segment the log
into clusters, based on exact data dependency [15][18], thus
overcoming the limitations of the data dependency. Our log-
ging algorithm suggests that each cluster in itself be segmen-
ted into sub-clusters according to two different approaches:
number of data items or space occupied. In addition, based on
this clustered log, we develop a damage assessment and reco-
very algorithm. The aim being fast and efficient damage
assessment and recovery, with our approach, even if the clus-
ters grow in size, the sub-clusters size will be controlled, and
only the required sub-clusters will be scanned, instead of
scanning the whole cluster.

The rest of the work is organized as follows. In Section 2,
we give our log segmentation method, as well as the damage
assessment and recovery algorithms, while the experimental
results are in Section 3; and finally we give our conclusion in
Section 4.

2. Hybrid sub clustering for damage assessment
and recovery

In our work, in order to reduce the I/O access, we suggest
an algorithm that segments the log into clusters, based on
exact data dependency; thus, overcoming the limitations of
the data dependency. In addition, each cluster in itself is seg-
mented into sub-clusters according to two different approa-
ches: number of transactions or space occupied; by keeping
two additional data structures (lists), in order to facilitate
damage assessment process.

2.1 Assumptions

Our logging model is based on the assumption that the
attacking transaction has been detected by one of the intrusion
detection techniques. We also assume that the scheduler is
modified to produce different types of read and write opera-
tions, similar to that described in [12], in addition, the history
is rigorous serializable [21]. The transactions are kept in tem-
porary sequential log during the execution of the transactions,
this is so that the clustered log will store only the committed
transactions; thus, will require no undo operations in case of
transaction or media failures. Also we assume that the trans-
action ID is sequentially incremented; i.e, if T, commits then
the only transaction committed before T, is T,.

2.2 Transaction model

A transaction could be defined as a program unit that
accesses and possible updates various data item; it could be

formalized in terms of predicates, a precondition that accor-
dingly different statements are executed, and statements [21].

In our model, which agrees with the models described in
[15] and [18], the representations of a transaction and the dif-
ferent read and write operations of the transactions, could be
explained in the following transaction example:

T,:if (z<5) then 1
1.1
1.2

a:=x;
Else b :=y;

Where value of z = 1, then the history is: pr,![z], actual-
read, 1[x], actual-write,!1[a], overlooked-read,!2[y], overloo-
ked_write,!2[b]; the superscripts representing the block num-
bers, while the subscripts transaction number.

The definitions that our proposed model relies on are:

Definition 1: A write operation w;/x] of a transaction 7 is
dependent on a read r;/y] operation of T; if w;/x] is computed
using the value obtained from r;[y].

Definition 2: A data value v, is dependent on data value v,
if the write operation that wrote v, was dependent on a read
operation v,, where v, and v, may be two different versions of
the same data item.

Definition 3: A write operation w;/x] of a transaction is
dependent on a set of data items I, if x = f{I); i.e, the values
of data items in / are used in calculating the new value of x.
There are the following three cases for the set of data items /.

Case 1) I = @, This means that no data item is used in cal-
culating the new value of x, and is denoted as a fresh write. If
w;[x] is a fresh write and if the previous value of (before this
write operation) is damaged, the value of x will be refreshed
after this write operation.

Case 2) x # I, the operation is called a blind write. In this
case if the previous value of x (before this write operation) is
damaged and none of the data items in / are damaged, then the
value of x will be refreshed after this write operation.

Case 3) x = [, If the previous value of x (before the write
operation w;/x]) is damaged, then x remains damaged.
Otherwise, if any item in / is damaged, then x is damaged.

Definition 4: A predicate-read of a data item in a transac-
tion 7, is the data item the transaction read for determining the
execution path in its program when 7; was executed. This is
denoted by pr;[x], where p before r represents that it is a pre-
dicate read, subscript i represents the transaction to which this
predicate-read operation belongs to and x in the bracket
represents the data item that is read by this transaction.

Definition 5: An actual-read (or actual-write) of a data
item in a transaction 7; is the data item transaction read (or
wrote) for executing a statement (not logical or relational)
when 7; was executed. This is denoted by ar,/x] (or aw,/x])
where a before r (or w) denotes that this is an actual read (or
write) operation and subscript i repesents the transaction to

44

o

Haraty & Zeitunlian

30/10/07 12:47 Page 45

—p—

= Ramzi A. Haraty and Arda Zeitunlian /ISESCO Science and Technology Vision - Volume 3, Number 4 (November 2007) (4350) o

which this actual-read (or actual-write) operation belongs to,
x in the bracket represents the data item that is read (or wrote)
by the transaction.

Definition 6: The overlooked-read (or overlooked-write)
or data item in a transaction 7; is the data item the transaction
would have read (or wrote) if this transaction had followed a
different execution path of its program. This is denoted by
or;[x] (or ow,[x]) where the character o before » (or w) deno-
tes that this is in overlooked read or write operation, subscript
i represents the transaction to which this overlooked-read (or
overlooked-write) operation belongs to, x in the bracket repre-
sents the data item that would have read (or write) by this
transaction.

Definition 7: [18] A transaction 7, is a partial order with
ordering relation <;, where:

1. T; < (pr; [x], arx], or[x], aw][x], ow,[x] | X is a data
item) N {E,};

where E,; = {ai, ci}.
2.a,€T;iffc;e T,

3.i1f OP; € T,, (any operation (OPi other than q; or ¢;) then
OPi<i (g; or ¢)).

4. if r[x], w/x] e T,. (any combination of read and write
operation) then

r[x] <w[x] or w[x] <; r[x], and

5. if a conditional block is present in the transaction then
predicate-read precedes all read and write operations in that
block.

2.3 Logging, damage assessment and recovery algorithms
2.3.1 Data structures
The data structures used in our sub-clustering model are:

Transaction Sub Cluster List (TSC): This list is used to
store the transaction ID and the corresponding Sub Clusters in
which the data items of this transaction are stored. This table
is referred to obtain the sub clusters that are affected, once the
malicious transaction is identified.

Sub Cluster Data List (SCD): This is used to store the sub
cluster IDs, the transaction ID and the corresponding data
item, whether read/write, actual/overlooked, predicate or sta-
tement. This table is referred to identify the data items of the
operations of the malicious transaction as the sub cluster is
obtained.

2.3.2 Hybrid sub-clustering algorithm

In our model, clusters are determined periodically, once a
list of all committed transactions from the temporary log is
obtained. (Periodically the temporary log could be purged;
i.e, when the updates till that transaction; are guaranteed to be
in the stable database and are clustered to their appropriate
sub-clusters).

2.3.2.1 Hybrid sub-clustering algorithm based on fixed
number of transactions

In this approach, a fixed number of committed transac-
tions are grouped together to form the sub-clusters, shown in
Table 2.1.

In the above algorithm, whenever a read operation (actual,
overlook read, predicate read) on any data item is encounte-
red, the SCD and TSC lists are checked to determine the sub-
cluster in which the data item resides. If both the data item
and the transaction are found in the sub-cluster then the ope-
ration is added to the log (sub-cluster) and the SCD list is
updated. If the data item is found in the sub-cluster, but not
the transaction, then the TSC is updated, as well as the trans-
action counter of the sub-cluster, and the operation is added to
the log. In case the operation is a write (actual, overlooked),
then the SCD and TSC lists are checked to determine the sub-
cluster; in addition data dependency is checked, if data depen-
dency is established then all the data items are merged; i.e,
put in the same cluster; and accordingly the SCD and TSC
lists are updated.

2.3.2.2 Hybrid clustering algorithm based on fixed size

In this approach, the criterion for dividing the cluster is
the size of the sub-cluster. Operations of committed transac-
tions that are dependent are added to the same sub-cluster
until there is no more space for the next transaction to fit into
it. Though, this method will result in the wastage of disk
space, it makes damage assessment simple.

2.3.3 The damage assessment and recovery algorithm

Once the malicious transaction/s is/are identified,
Transaction Sub Cluster (T'SC) and the cluster/s and sub-clus-
ters (SCD) lists are checked to obtain the affected data items;
thus constituting the damage assessment phase, and once
damaged data items are identified, recovery becomes easier
and instead of scanning the whole scan; only the sub-clusters
that contain the damaged data items are scanned. In this sec-
tion, an example will be described in order to explain the
damage assessment and recovery algorithms, and later the
damage assessment and recovery algorithms will be presen-
ted.

2.3.3.1 A scenario

For example, consider the following transactions:

T1: B:=A; T2: A:=A+1;
T3: C :=B; T4: D :=C;
T5:E:=D + 2; T6: F :=E;
T7: X :=1; T8: Y :=X;
T9:Z = A;

Using our sub clustering approach, the Transaction Sub
Cluster (TSC) List and the Sub Cluster Data Item (SCD) List
for these transactions are given in Figure 4.1. Assuming

45

o

Haraty & Zeitunlian 30/10/07 12:47 Page 46 $

= Ramzi A. Haraty and Arda Zeitunlian /ISESCO Science and Technology Vision - Volume 3, Number 4 (November 2007) (4350) o

TABLE 2.1 - Hybrid Sub-Clustering Algorithm based on fixed number of transactions.

1. For every operation O; of a committed transaction in the temporary log
1.1 Case 0, is read

1.1.1 If (x; € Read_Set(Predicate T;¥) then

1.1.1.1 If (x; ¢ a cluster's sub-cluster (SCD) then

1.1.1.1.1 Assign new cluster ID and new sub-cluster (ID = 1);

1.1.1.1.2 Update the corresponding data structures (SCD & TSC)

1.1.1.2 Else

1.1.1.2.1 If (sub_cluster.transaction_count < MAX)

1.1.1.2.1.1 Get the cluster ID and sub-cluster ID;

1.1.1.2.1.2 Update the corresponding data structures (SCD & TSC);
1.1.1.2.2 Else

1.1.1.2.2.1 if (sub_cluster.transaction_count > MAX)

1.1.1.2.2.1.1 Assign new sub_cluster within the same cluster;
1.1.12.2.1.2 Update the correspondng data structures (SCD & TSC);

1.1.123 Record the predicate[predicate-read, Tjk, x;, string] in the log (cluster);
1.1.2 If (O, € Read_Set(Statement T;k) then

1.1.2.1 If (x; ¢ a cluster's sub-cluster) then

1.1.2.1.1 Assign new cluster ID and new sub-cluster (ID = 1);

1.1.2.1.2 Update the corresponding data structures (SCD & TSC);

1.1.2.2 Else

1.1.2.2.1 If (sub_cluster.data_item_count < MAX)

1.1.2.2.1.1 Get the cluster ID and sub-cluster ID;

1.1.2.2.1.2 Update the correspondng data structures (SCD & TSC);

1.1222 Else

1.1.2.2.2.1 If (sub_cluster.data_item_count > MAX)

1.1.22.2.1.1 Assign new sub_cluster within the same cluster

1.1222.1.2 Update the corresponding data structures SCD & TSC);

1.1.2.2.3.1 If O; is actual read

1.1.2.2.3.1.1 Record the operation [read_item, T;,k, x;, value, string] in the log(cluster)
1.12232 Else

1.1.2.2.3.2.1 Record the operation [overlook_read_item, T;k, x;, value, string] in the log(cluster)

1.2 Case 0; is Write

1.2.1 If (O; € write_Set(Statement T;) then

1.2.1.1 If (x; ¢ a cluster's sub-cluster) and (No dependency) then
1.2.1.1.1 Assign new cluster ID and new sub-cluster (ID = 1);
1.2.1.1.2 Update the corresponding data structures (SCD & TSC);
1.2.1.2 Else

1.2.1.2.1 If (x; € a cluster's sub-cluster) and (No dependency) then
1.2.1.2.1.1 If (sub_cluster.transaction_count < MAX)

1.2.12.1.1.1 Get the cluster ID and sub-cluster ID;

1.2.1.2.1.1.2 Update the corresponding data structures (SCD & TSC);

1.2.1.2.1.2 Else

1.2.1.2.1.2.1 If (sub_cluster.transaction_count > MAX)

1.2.1.2.1.2.1.1 Assign new sub_cluster within the same cluster;

1.2.1.2.1.2.12 Update the corresponding data structures (SCD & TSC);

1.2.1.2.2. If (dependency) then

1.2.12.2.1 Check all dependent reads

1.2.12.2.1.1 For each different cluster MERGE

1.2.12.3.1 If O; is actual-write

1.2.123.1.1 Record the operation [write_item, T;, x;, new_value, old_value, string] in the log
12.1232 Else

1212321 Record the operation [overlook_write_item, Tk, x;, new_value, old_value, string] in the log

i

46

Haraty & Zeitunlian

30/10/07 12:47 Page 47

—p—

= Ramzi A. Haraty and Arda Zeitunlian /ISESCO Science and Technology Vision - Volume 3, Number 4 (November 2007) (4350) o

Cluster (TEC) List Claster 3ub Cluster Data Trans.
b Item
1 1 A 1 R
Trans. Cluster 1 1 B 1 W
Code 1 1 A 2 E
1 1 1 1 A 2 w
= 1 1 1 F 3 E
3 : 1 1 [3 W
1 2z o3 4 E
4 2 1 2 D 4 W
5 2 1 2] 3 E
= 3 1 2 E 5 W
1 2 E & R
1 2 F [W
1
1 3 X 2 R
1 3 kg g W
1 3 B 9 R
1 3 2 9 W

Figure 2.1 - The Transaction Sub Cluster (TSC) list and
the basic Sub Cluster Data item List (SCD) list, using
hybrid sub-clustering on fixed number of transactions.

transaction ID = 1 is found to be malicious. For damage
assessment, from the Transaction Sub Cluster List the sub
cluster ID is obtained, in this case is 1, and from the SCD List,
the affected data items are obtained; {B, Z}, and thus for
recovery only the sub clusters, in this case {1,3}, that contain
the affected data items will be scanned.

2.3.3.1 The Damage assessment algorithm

Our damage assessment algorithm, shown in Table 2.2, uses
additional structures: Damaged_DI and Damaged_PB. The
former is the list of data items that are directly or indirectly
damaged by the malicious transaction, while the later contains

the damaged predicate block of a transaction T, that has been
affected directly or indirectly by the malicious transaction.

The first step of the algorithm initializes the Damaged_DI
and Damaged_PB data structures, by creating them and set-
ting them to null. Then every transaction in the Transaction
Sub Cluster (TSC) list s checked, from the first point of attack
to identify all affected transactions. Step 2.2.1 checks whether
the record is predicate read, if so, then if the Data Item (x)
belongs to the Damaged_DI then the block to which this pre-
dicate belongs is also damaged;thus, the block is added to the
Damaged_PB list. In step 2.2.2, if the record is actual-read or
overlooked-read then if the operation does not belong to the
malicious transaction but the Data Item x is damaged then the
block is checked, if the block is not damaged, it should be
added to the Damaged_PB list. Step 2.2.3 checks if the record
is write operation, if so, then if the transaction is malicious
but data item does not belong to the Damaged_DI list then it
is added, else in step 2.2.3.2 if the transaction is not malicious
and the block is not damaged, but the Data Item (x) is affec-
ted, then this operation is clean write, thus; the the data item
is removed from the Damaged_DI list. In step 2.2.3.2.2.2 if
the transaction is malicious and the Block is damaged then the
Data Item is added to the Damaged_DI list.

2.3.3.2 The recovery algorithm

For recovery, the data structures used in damage assess-
ment are used, described in Table 2.3.

In the first step of our recovery model, is to scan all the
Damaged_PB records that were obtained from the damage
assessment algorithm. In step 1.1., the sub cluster in which

TABLE 2.2 - Damage Assessment

L. Create Damaged_DI List and initialize it to null; Create Damaged_PB List and initialize it to null;
2. For every Malicious Transaction

2.1. Get the Sub Cluster ID from the Transaction Sub Cluster (TSC) List

22. Scan the Sub cluster Data Item (SCD) List starting with the minimum sub cluster ID; having trans-

22.1.
22.1.1.
22.1.1.1.
222.
222.1.
222.1.
222.1.1.
223.
223.1.
223.1.1.
223.1.1.1.
2232
2232.1.
2232.1.1.
22322
22322.1.
2232211

action ID >= the malicious transaction ID.

If (Record = = Predicate_Read_Item) then

If ((x € Damaged_DI) then

Add the predicate block number (j.k) & transaction ID (7) of this operation into the Damaged_PB
Else If ((Record = = Read_item) OR (Record = = Overlooked_Read_item) then

If (T, is not Malicious) AND (x € Damaged_DI) then

If (T;Six ¢ Damaged_PB) then

Add the block of number number (j.k) & transaction ID (i) of this operation into the Damaged _PB
Else If ((Record = = Write_Item]) OR (Log Record = = Overlooked_Write_Item) then

If (T; is Malicious) then

If (x ¢ Damaged_DI) then

Add x to the Damaged_DI

Else

If ((T; is not Malicious) AND (T;.Sik ¢ Damaged_PB)) then

If (x € Damaged_DI) then Remove the entry for x from the Damaged_DI,

Else

If ((T; is not Malicious) AND (T;.Sk € Damaged_PB)) then

Add x to the Damaged_DI

47

Haraty & Zeitunlian

30/10/07 12:47 Page 48

—p—

= Ramzi A. Haraty and Arda Zeitunlian /ISESCO Science and Technology Vision - Volume 3, Number 4 (November 2007) (4350) o

TABLE 2.3 - Recovery

For every block in the Damaged_PB

.1 Get the Sub-Cluster ID from the Transaction Sub Cluster (TSC) List

Call ReEvaluate_PB (T;,Pik)

1
1
1
2. Flush the updated data items to the stable database
3

Delete Damaged_DI and Damaged_PB

Procedure ReEvaluate_PB

1. reconstruct the Predicate Block from the sub-cluster (with the overlooked-reads and writes)
2. Reevaluate the Predicate

2.1 For every statement in the predicate Block

2.1.1 Read all the data items x

2.1.1.1 if (x ¢ Damaged_DI) then

Scan the sub-cluster to find the update record that modified x and get the old_value

2.1.1.1.1 Read the current value from the entry

2.1.1.2 Else

2.1.1.2.1

2.1.122 if not found then read the value from the database
2.12 for write x

2.1.2.1 if (x € Damaged_DI) then

21212 Update the entry with the new fresh_value

2122 Add x to the Damaged_DI with the new fresh_value

the transaction belongs is obtained from the Transation Sub
Cluster (TSC) list, then in step 1.2., each block is re-evalua-
ted, then in step 2, the updated data items are flushed back to
the database, and in step 3, the Damaged_DI and
Damaged_PB are cleared and released.

In the re-evaluate procedure, the Damaged_PB is scan-
ned, so that every block that was marked as damaged be re-
evaluated. In step 2.1.1, if the operation is read (actual or
overlooked) and is not affected then the current value is obtai-
ned from the log (i.e, from the sub-cluster record) step
2.1.1.1.1, else the sub-cluster is scanned to find the update
record that modified x and get the old_value from that record,
step 2.1.1.2.1, if there are no updates on this data item in the
sub-clustered log, then the value is obtained from the data-
base. If the operation is actual-write or overlooked-write, then
if the data item is affected the Damaged_DI structure is upda-
ted with the new value, else, step 2.1.2.2, is added into the
Damage_DI list with its new value, so it will be updated
accordingly.

3. Experimental results

We tested the performance of our models by means of
simulated environment. The simulated program develops a
temporary log that holds all the committed transaction, each
transaction having unique sequential ID. Then the program
clusters this temporary log based on exact data dependency;
in addition to sub-clustering according to the criteria (fixed
number of transactions, or space occupied), and generates the
Transaction Sub Cluster (TSC) and Sub Cluster Data Item
(SCD) lists.

Once an attack is detected the ID of that transaction is pro-

vided to the model, the damage assessment algorithm is exe-
cuted and a procedure to count the page I/O access time is
started for damage assessment, and another procedure to
count page I/O access time for recovery.

3.1 Performance analysis for damage assessment

The total page I/O time calculation is performed by
checking the total number of pages read during damage
assessment and then multiplying this number with the time
required to read each page. In order to calculate the total I/O
time for traditional not clustered the counting procedure
considers the bytes scanned from the starting point of attack
till the end of the traditional log, for traditional clustered
based on data dependency; the bytes scanned from the staring
point of the attacking transaction till the end of the cluster.
The parameters used are shown in Table 3.1.

To compute page I/O for our damage assessment algo-
rithm, each record in the Sub Cluster Data item (SCD) List is
scanned. Each Sub Cluster Data item (SCD) List record
consists of the sub-cluster id, the data item id, transaction id
and block number which are identified as a number; the space
used for each is 4 bytes. In addition a bit is used to store the
read/write, overlooked/actual and predicate/statement.

TABLE 3.1 - Parameters and their values
used in page I/O Calculation

Parameters Values
Space taken by a read operation of a transaction in the log 40 bytes
Space taken by write operation of a transcation in the log 60 bytes
Page Size 2KB
Page I/O Time (in milliseconds) 15

48

o

Haraty & Zeitunlian

30/10/07 12:47 Page 49

—p—

= Ramzi A. Haraty and Arda Zeitunlian /ISESCO Science and Technology Vision - Volume 3, Number 4 (November 2007) (4350) o

Damage Assessment Analysis

o
S
& 1000 4
o 800 J
8
< 600 4

400 4

200 4

04 T T
50 100 150

Attacker ID

@ Traditional

w Traditional clustered (data
dependency)

1 Hybrid Sub-cluster (data
dependency)

Figure 3.1 - Damage assessment time comparison, when total
number of transactions is 200, total number of data items is 5000,
and maximum number of data accessed by a transaction is 45.

The comparison analysis, shown in Figure 3.1, confirms
that our model accesses less page I/0 during damage assess-
ment, thus improving performance. To construct the graph
depicted above, the attacker id was varied to 50, 100 and 150.

3.2 Performance Analysis for Recovery

To calculate the page 1/O by our recovery algorithm, each
record; i.e, each operation that was tagged as affected, in the
sub-cluster is scanned, using the parameters shown in Figure 3.1.

Figure 3.2 shows the performance of the recovery process
on the log sub-clustered based on the number of committed
transactions. To construct the graph the values of fixed num-
ber of the committed transactions were varied from 5 to 30
with increment of 5, the attacker id is 100 and using the para-
meters shown in Table 5.1. Sub-clustering having a small
number of committed transactions has the advantage of skip-
ping them during recovery, thus as the number of committed
transactions increases, the performance decreases.

Recovery process analysis on a log sub-clustred based on
number of committed transactions

600

B /
£ 500
g //
£ 400
E
= —
& 300
o
Q
< 200

100

0
5 10 15 20 25 30

Number of committed transactions

Figure 3.2 - Results of the recovery algorithm on the log
sub-clustered based on fixed number of transaction.

Figure 3.3 shows the performance of the recovery process
on the log sub-clustered based on the size of the sub-cluster.
The values to construct the graph are the same as the pre-
vious, except that the size of the cluster varies from 5000 to
30000 with increment of 5000. As before, the performance
decreases as the size of the sub-cluster increases.

Figure 3.4 shows comparison analysis of the recovery
using the traditional log, traditional clustered log based on
data dependency, and sub-clustered log (based on the number
of committed transactions and the size of the sub-cluster). The
values used to construct the graph are the same as in Table
5.1, for sub-cluster based on number of committed transaction
is 20, for sub-cluster based on size is 20000 and the attacker
ID is varied to 50, 100 and 150.

Recovery process analysis on a log sub-clustered based on
size of the sub-cluster
400
—_ e ————————————
350
I
o 300
13
£ 250
& 200
8
g 150
100
50
0 r
5000 10000 15000 20000 25000 30000
Size of the sub-cluster
Figure 3.3 - Results of the recovery algorithm on
a log sub-clustered by the size of the sub-cluster.
Recovery Analysis
2000
1800
% 1600 4 m Traditional
£ 1400
E 1200 m Traditional clustered (data
F dependency)
o 1000
a o sub-clustered (fixed number of]
8 800 ~ transactions)
< 600 ¢ o sub-clustered (fixed size)
400 1
200 1
04
50 100 150
Attacker ID

Figure 3.4 - Recovery time comparison, when total number of
transactions is 200, total number of data items is 5000, and
maximum number of data accessed by each transaction is 45.

4. Conclusion

Since it is extremely difficult to have security measures that guarantee the prevention of information system from attacks,
it is crucial to have fast and efficient damage assessment and recovery methods. In our work, we have focused on clustering the
log; based on exact/extended data dependency, into sub-clusters for faster damage assessment and recovery; also ensuring that
the size of each sub-cluster was under control so the sub-clusters would not grow to humongous proportions. Through simulation
we compared the performance of our logging technique; sub-clustering the clusters, with the traditional methods and the results
confirm that our proposed method accelerates both the damage assessment and the recovery processes considerably. In addi-
tion, sub-clustering the clusters by size proved to be slightly better than sub-clustering with a fixed number of transactions.

As future work, our model could be combined with the matrix approach in order to achieve better results.

49

Haraty & Zeitunlian

30/10/07 12:47 Page 50

—p—

Ramzi A. Haraty and Arda Zeitunlian /ISESCO Science and Technology Vision - Volume 3, Number 4 (November 2007) (43-50)

References

[1] Jajodia S.,McCollum C.D. and Ammann P. (1999, July). Trusted Recovery
Communications of the ACM. 42(7). 71-75.

[2] Panda B. and Giodano J. (1999, July). Defensive Information Warfare
Communications of the ACM. 42(7). 31-32.

[3] Elbirt A.J. (2003). Information Warfare: Are you at Risk? IEEE Technology
and Society Magazine. 13-19.

[4] Jajodia S., Ammann P. and McCollum C.D.(1999, April) Surviving
Information Warfare Attacks. IEEEComputer. 32(4). 57-63.

[5] Choy M., Leong H.V. and Wong M.H. (2000, November). Disaster Recovery
Techniques for Database Systems. Communication of the ACM. 43(11). 272-
280.

[6] Hu Y. and Panda B. (2003). Identification of Malicious Transactions in
Database Systems. Proceedings of the 7" International Database Engineering
and Applications Symposium (IDEAS). 329-335.

[7] Ammann P, Jajodia S., Collum C. D. and Blaustein B.T.(1997, May 04_07) ,
Surviving Information Warfare Attacks on Databases. Proceedings of the 1997
Symposium on Security and Privacy (S&P). 164- 174.

[8] Panda B. and Patnayk S. (1998, December). A recovery Model for Defensive
Information Warfare. Proceedings of the 9" International Conference on the
management of Data, 359-368.

[9] Patnaik S. and B.Panda B.(1999, November) Dependency Based Logging for
Database Survivability From Hostile Transactions. Proceedings of the 12"
International Conference on Computer Applications in Industry and
Engineering.

[10] Liu P, Ammann P. and Jajodia S.(2000, January). ReWriting Histories:
Recovering from Malicious Transactions. Distributed and Parallel
Databases. 8(1). 1-14.

[11] Panda B. and Yalamanchili, R.(2001).Transaction Fusion in the Wake of
Information Warfare. Proceedings of the 2001 ACM Symposium on Applied
Computing. 242-247.

[12] Ammann P., Jajodia S. and Liu P. (2002, September-October). Recovery
From Malicious Transactions. IEEE Transactions on Knowledge and Data
Engineering. 14(5). 1167-1185.

[13] Panda B. and Giordano J. (1999) Reconstructing the Database After electro-
nic Attacks. Database Security XII: Status and Prospect Kluwer Academic
Publishers, 143-156.

[14] Panda B. and Giordano J. (1998, February). An Overview of Post
Information Warfare Data Recovery. Proceedings of the 1998 ACM
Symposium on Applied Computing. 253-254.

[15] Sobhan R. and Panda B. (2001, July). Reorganization of the Database Log for
Information warfare Data Recovery. Proceedings of the 15" Annual IFPI WG
11.3 Working Conference on Database and Application Security. 121-134.

[16] Panda B. and Tripathy S. (2000, March). Data Dependency Based Logging
for Defensive Information Warfare. Proceedings of the 2000 ACM Symposium
on Applied Computing. 361-365.

[17] Tripathy S.and Panda B.(2001 June 5-6). Post-Intrusion Recovery Using Data
Dependency Approach. Proceedings of the 2001 IEEE Workshop on
Information Assurance and Security. 156-160

[18] Panda B. and Haque K.A. (2002). Extended Data Dependency approach- A
Robust Way of Rebuilding Database. Proceedings of the 2002 ACM
Symposium on Applied Computing. 446- 452.

[19] Ragothaman P. Ragothaman and B. Panda and Panda B. Analyzing Transaction
Logs for Effective Damage Assessment. (2002, July). Proceedings of the 16"
Annual IFPI WG 11.3 Working Conference on Database and Application
Security. 121-134

[20] Ragothaman P. and Panda B. (2003). Hybrid Log Segmentation for Assured
Damage Assessment. Proceedings of the 2003 ACM Symposium on Applied
Computing. 522-527

[21] El Masri E. and Navathe S.B. (2000). Fundamentals of Database Systems.
Third Edition. Addison-Wesley.

[22] Lala Ch. And Panda B. (2001, July). Evaluating Damage from Cyber Attacks:
A Model and Analysis. IEEE Transactions on Systems, Man and Cybernetics
- Part A: Systems and Humans. 31(4). 300-310.

[23] Valsankgar A. and Panda B.(2003, June). An Architecture for Making Data
Available Ceaselessly During Recovery. Proceedings of the 2003 IEEE:
Workshop on Information Assurance. 196 - 202.

[24] Hu Y. and Panda B. (2004 June 10-11).Mining Data Relationships for
Database Damage Assessment in a Post Information Warfare Scenario.
Proceedings of the 2004 IEEE Workshop on Information Assurance. 401- 409.

[25] Panda B. and Zhou J. (2003, July 16-18). Database Damage Assessment
Using A Matrix Based Approach: An Intrusion Response system. Proceedings
of the 7" International Database Engineering and Applications Symposium
(IDEAS '03). 336- 341.

50

