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Abstract: A digital signature is a mechanism designed to allow secure communication through an 
insecure medium and can be traced in many applications where privacy is required. A digital 
signature is an electronic signature that can be used to authenticate the identity of the sender of a 
message or the signer of a document and possibly to ensure that the original content of the 
message or document that has been sent is unchanged.  The main purpose of this study was to 
extend important and useful digital signature schemes from the domain of natural integers Z to 
two principal ideal domains; namely, the domain of Gaussian integers Z[i] and the domain of the 
ring of polynomials over finite fields F[x] by extending arithmetic needed for our extensions to 
these domains. We implement the classical and modified RSA cryptosystem to compare and to 
test their functionality, reliability and security. To test the security of the algorithms we implement 
attack algorithms to solve the factorization problem in Z, Z[i] and F[x]. After factorization is 
found, the RSA problem could be solved by finding the private key using the extended Euclidean 
algorithm. 
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INTRODUCTION 

 
 Digital signatures are strong tools applied in order 
to achieve the security services of authentication (proof 
of identity of the sender), data integrity (detection of 
changes to the message) and non-repudiation 
(prevention of denial of sending the information). They 
are digital counterpart of handwritten signatures that 
can be transmitted over a computer network. Only the 
sender can make the signature, but other people can 
easily recognize as belonging to the sender. The sender 
produces a signature consisting of a number associating 
a message (in digital form) with a secret key. This 
signature is intended to be unique and it does not 
necessarily require that a message be encrypted but 
must be verifiable. Diffie and Hellman introduced the 
concept of a digital signature in 1976. They published 
their landmark study "New Directions in 
Cryptography"[1]. Digital signatures schemes are based 
on one-way functions that are relatively easy to 
compute in one direction, but very difficult to compute 
going the other direction[2]. The RSA signature is the 
first method scheme discovered and is widely used[3]. 
The signature works in Zn where n is the product of two 
large primes p and q and its security is based on the 
intractability of the integer factorization problem, on 
the RSA problem and on the selection of the 
redundancy function. The RSA problem[4], is finding an 
integer m such that   me � d (mod n), where n is a 
product of two distinct large odd primes p and q, e is a 

positive random integer such that gcd(e,(p−1)(q−1)) =1 
and an integer d. That is, the RSA problem is that of 
finding eth roots of an integer d modulo a composite 
integer n. 
 The classical signature schemes, such as RSA, 
ElGamal and Rabin signature schemes, are described in 
the settings of the domain of integers Z. Many aspects 
of arithmetic over the domain of integers can be carried 
out to the domain of Gaussian integers Z[i], the set of 
all complex numbers of the form a+bi, where a and b 
are integers and to the domain of polynomials over 
finite fields F[x][5]. Recently, the classical signature 
schemes were modified in many directions in these 
domains. El-Kassar et al.[6] modified the ElGamal 
signature scheme from its classical settings of the 
domain of natural integers to the domain of Gaussian 
integers by extending the arithmetic needed for the 
modifications to the domains. Similar extensions to the 
domain F[x] was given by El-Kassar and Haraty in[7]. 
Haraty et al.[8] gave a comparative study of the 
extended ElGamal signature scheme algorithms. In[9], 
two extensions of the RSA signature scheme in the 
domain of Gaussian and the domain of polynomials 
over finite fields were presented. It was pointed out that 
the extended algorithms require a little additional 
computational effort than the classical one and 
accomplish much greater security. 
 In this study, we compare and evaluate the classical 
and modified RSA algorithms. We investigate the 
issues of complexity, efficiency and reliability by 
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running the programs with different sets of data. 
Moreover, these different algorithms will be compared. 
In addition, implementation of an attack algorithm will 
be presented. Applying specific mathematical concepts 
to find the private key does this. After finding the key, 
it will be easy to sign the message. A study will be done 
using the results of running the attack algorithm to 
compare the security of the classical and modified 
signature scheme algorithms. 
 
Classical and modified RSA signature schemes: The 
classical and modified RSA signature schemes are 
described in this section. Algorithms and examples are 
given. These algorithms are implemented to evaluate 
and compare the various methods. 
 
Classical RSA signature scheme: In RSA signature 
scheme, entity A generates the public-key by first 
generating two large random odd primes p and q, each 
roughly of the same size and computing the modulus n 
= pq and Euler phi-function �(n) = (p−1)(q−1)[4]. Entity 
A then selects the exponent e to be any random integer 
in the interval (1, �(n)) such that gcd(e,�(n))=1. Using 
the extended Euclidean algorithm for integers, entity A 
finds the exponent d which is the unique integer 
(1,�(n)) relatively prime to �(n) such that ed � 1 (mod 
�(n)). Hence, the public-key is the pair (n, e) and A�s 
private-key is the triplet (p, q, d). A generates the 
signature as follows. First, entity A computes the 
redundancy function of the message m which is m = 
R(m) such that R(m) Zn and also computes s � md (mod 
n). Finally, A sends the signature s to entity B. 
B validates the signature as follows. B obtains A's 
authentic public key (n, e), computes. m � se (mod n) 
and rejects the signature if m ( M{R} (image of R). 
Finally, B recovers m by computing R(1(m).  
 
Algorithm (RSA signature scheme): 
* Find two large primes p and q and compute their 

product n = pq. 
* Find an integer d that is relatively prime to �(n) = 

(p(1)(q(1). 
* Compute e from ed � 1 (mod �(n)). 
* Broadcast the public key (n, e). 
* Compute the redundancy function of the message 

m which is m = R(m) such that R(m) Zn.  
* Sign the message m using the private-key by 

applying the rule s � md (mod n). 
* The receiver validates the signature using the rule 

m � se (mod n). 
 
Example: In order to generate the public-key, entity A 
selects the primes p = 852225047 and q = 603309029 
and then computes the modulus n = pq = 
514155065595049363 and the Euler phi-function �(n) 
= (p−1)(q−1) = 514155064139515288. Next, A selects 
the exponent e = 231814262079216429 and uses the  
 

extended Euclidean algorithm for integers to find the 
exponent d = 387883402970610381 so that ed � 1(mod 
�(n)). Now, the public-key is the pair (n = 
514155065595049363, e = 231814262079216429) and 
A�s private-key is the triplet 
(p = 852225047, q = 603309029, d = 
387883402970610381). 
 To sign the message m = 1101100100111, for 
simplicity, take R(m) = m so that R is the identity 
function. Then, m = R(1101100100111) = 
1101100100111. A computes s = md (mod n) = 
1101100100111387883402970610381 (mod 
514155065595049363) = 502534570854711493 and 
sends the signature 502534570854711493 to B. B 
obtains A's authentic public key   (n = 
514155065595049363, e = 231814262079216429), 
computes m = se (mod n) = 502534570854711493 
231814262079216429 (mod 514155065595049363) = 
1101100100111 and computes m = R−1(m) = m = 
1101100100111. 
 
RSA signature scheme in the domain of Gaussian 
integers: In RSA signature scheme, entity A generates 
the public-key by first generating two large random 
Gaussian primes �, � and computes � = ��. The 
Gaussian primes of Z[i] up to multiples of ±1 and ±I[10], 
are of the form: i) � = 1+i; ii) � = a+bi and π  = a−bi, 

where q = �� π = a²+ b² is an odd prime integer of the 
form 4k+1; iii) p, where p is an odd prime integer of the 
form 4k+3. If � and � are selected to be of the form � 
and �, then the modified scheme is equivalent to the 
classical one[9]. If � and � are selected to be of the form 
� and p, then � can be easily factored. Hence, � and � 
are selected to be odd integers of the form 4k+3. Next, 
entity A computes �(�) = �(�)�(�) = (�²−1)(�²−1), 
where �(�) is Euler phi-function in Z[i][11]. It selects a 
random integer e such that 1<e<�(�) and e is relatively 
prime to �(�). Then, entity A finds the unique integer d 
such that ed � 1(mod �(�)). A's public-key is (�, e) and 
A's private-key is (�, �, d). 
 Represent the message as a number 	 chosen from 
the complete residue system modulo �, G� = {a+bi | 
0
a
��−1, 0
b
��−1}. After computing the 
redundancy function of the message 	 which is 	 = 
R(	), A computes the signature s = 	d (mod �) and 
sends it to B. To verify the signature sent by A, B gets 
A's public key (�, e), computes the message 
representative 	 as 	 = se (mod �) and finally applies 
verification process to 	 to recover 	. We note that the 
message space is enlarged so that its order is the square 
of that of the classical case. Also, more than the square 
of that of the classical case enlarges the range for the 
public exponent e. next; we provide three algorithms 
describing the RSA signature scheme over the domain 
of Gaussian integers. First, entity A generates the public 
and private keys by doing the following. 
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Algorithm (key generation for the RSA Gaussian 
signature): 
* Generate two distinct large random Gaussian 

primes � and �, each roughly the same size. 
* Compute � = �� and �(�) = (�²−1)(�²−1). 
* Selecte a random integer e, 1<e<�(�) such that 

gcd(e, �(�)) = 1. 
* Compute the multiplicative inverse d of e such that 

ed  � 1(mod �(�)) using the extended Euclidean 
algorithm for Gaussian integers. 

* Publish the pair (�, e) as the public key and 
keeping d as the private key. 

 
Algorithm (Signature generation of RSA Gaussian 
signature): 
* Represent the message as 	 from the complete 

residue system modulo �, G�. 
* Compute 	 = R(	) where 	.G�. 
* Compute s = 	d (mod �). 
* Output s as the signature to B. 
 
Algorithm (Signature verification of RSA Gaussian 
signature): 
* Obtain A's authentic public key (�, e) . 
* Recover 	 � se(mod �). 
* Verify that 	.MR, otherwise reject the signature. 
* Recover 	 = R−1(	). 
 
Example: (RSA Gaussian signature scheme with 
small parameters): Public-Key Generation: Let � = 
91939 and � = 69383 be two Gaussian primes of the 
form 4k+3. Compute the product � = �� = 6379003637 
and �(�) = (91939²−1)(69383²−1) = 
40691687387592447360. Entity A chooses e = 
25600002082007742863 such that gcd(e, �(�)) = 1 and 
1<e<�(�). Using the extended Euclidean algorithm for 
integers, A finds d = 33899823343652452847 such that 
ed � 1(mod �(�)). Hence, A�s public-key is the pair 
(� = 6379003637, e = 25600002082007742863) and A�s 
private-key is the triplet (� = 91939, � = 69383, d = 
33899823343652452847). 
 
Signature Generation: To sign the message 	 = 
320177 + 147i, for simplicity, take R(	) =  	 so that R 
is the identity function and 	 = R(320177 + 147i) = 
320177 + 147i. Afterwards, A computes s = 	d = 
(320177 + 147i) 33899823343652452847  � 3059266386 + 
5412724259i (mod 6379003637) Finally, A sends the 
signature to B. 
 
Signature verification: To validate the signature, B 
obtains first A's authentic public key  (� = 6379003637, 
e = 25600002082007742863). Then, B computes 	  �  
se (mod �)  =  
(3059266386+5412724259i)25600002082007742863   (mod 
6379003637)  = 320177 + 147i  Finally, B computes 	 
= R−1(	) = 320177 + 147i. 
 

The advantages of the RSA scheme in Z[i] are: first, 
generating two primes p and q in the form 4k+3 in both 
the classical and the modified methods requires the 
same amount of effort. Second, the modified method 
provides more security than the classical method since 
the number of elements that can be chosen from to 
represent the message m is about the square of those 
used in the classical case. Therefore, we deduce that the 
extended RSA over the domain Z[i] provides an 
extension to the range of chosen messages, which make 
trials more complicated. The computations involved in 
the modified method do not require computational 
procedures that are different from those of the classical 
method. 
 
RSA signature scheme over quotient rings of 
polynomials over finite fields: Let p be a prime 
number and let h(x) and g(x) be two distinct irreducible 
polynomials in Zp[x], the domain of polynomials over 
the finite field Zp, where h(x) is of degree s and g(x) is 
of degree r. Let f(x) = h(x)g(x). The polynomials h(x) 
and g(x) should be selected so that factoring f(x) = 
h(x)g(x) is computationally infeasible. The quotient ring 
Zp[x]/<f(x)> is finite of order p�, where n = r+s is the 
degree of f(x). It is well known that the quotient ring 
Zp[x]/<f(x)> is the direct sum of Zp[x]/<g(x)> and 
Zp[x]/<h(x)>, that is Zp[x]/<f(x)> ≅ (Zp[x]/<g(x)>) ⊕ 
(Zp[x]/<h(x)>). Its group of units U(Zp[x]/<f(x)>) is the 
direct product of groups of units U(Zp[x]/<g(x)>) and 
U(Zp[x]/<h(x)>), that is U(Zp[x]/<f(x)>) ≅ 
U(Zp[x]/<g(x)>)×U(Zp[x]/<h(x)>). 
 Since h(x) and g(x) are irreducible, the quotient 
rings Zp[x]/<g(x)> and Zp[x]/<h(x)> are finite fields of 
order ps and pr, respectively. Hence, the groups 
U(Zp[x]/<g(x)>) and U(Zp[x]/<h(x)>) are cyclic with 
orders �(h(x)) = ps−1 and �(g(x)) = pr−1, respectively, 
so that �(f(x)) = (ps−1)( pr−1). We provide the 
algorithms of the extended RSA signature over 
polynomials. First, entity A generates the public and 
private keys by doing the following. 
 
Algorithm (key generation for RSA signature over 
polynomials): 
* Generate an odd prime p, two distinct monic 

irreducible polynomials f(x) and g(x) over Zp. 
* Compute h(x) = f(x).g(x) in Zp[x]. 
* Compute the order of U(Zp[x]/<h(x)>) which is 

�(h(x)) = (ps−1)( pr−1). 
* Select a random integer e where 1<e<�(h(x)) such 

that gcd(e, �(h(x))) = 1. 
* Use the Euclidean algorithm for integers to find the 

unique multiplicative inverse d of e with respect to 
�(h(x)) such that 1<d<�(h(x)) and ed � 1 (mod 
�(h(x))) 

* Publish the key (p, h(x), e) and keep d as private 
key. 
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 To generate a signature on a message, entity A 
should do the following.  
 
Algorithm (Signature generation of RSA signature 
over polynomials): 
* Represent the message as a polynomial m(x) in the 

complete residue system    modulo f(x) in Zp[x]. 
* Compute m(x) =R(m(x)), as a polynomial in the 

complete residue system modulo h(x) in Zp[x]. 
* Use the private key d to compute s(x) = (m(x))d 

(mod h(x)). 
* Output s(x) as signature of m(x). 
 
 To verify the signature s(x) and recover the real 
message m(x), entity B should do the following. 
 
Algorithm (Signature verification of RSA over 
polynomials) 
* Obtain A's public key (p, h(x), e). 
* Compute m(x) = se (mod h(x)). 
* Verify that m(x) . MR, otherwise reject the 

signature. 
* Recover m(x) = R−1(m(x)) where R−1 is the inverse 

of the Redundancy function. 
 
Example: (RSA Signature Scheme over Polynomials 
with small parameters) 
Public-Key Generation: Let p = 389. Entity A chooses 
the two irreducible polynomials h(x) = x²+376x+43 and 
g(x) = x³+384x²+3x+10 in Z389[x]. Reducing the 
polynomial f(x) = h(x).g(x) in Z389[x] and computing 
�(f(x)), A gets f(x) = x,+371x.+111x³+145x²+388x+41 
and �(f(x)) = (389³−1)(389²−1) = 8907280505760. 
Entity A then chooses the integer e = 95561135039 
such that gcd(e, �(f(x)) = 1 and 1<e<�(f(x)). Using the 
extended Euclidean algorithm for integers, A finds d = 
5878808345759 satisfying ed � 1 (mod�(f(x))). Hence, 
A's public-key is (p=389, f(x) = 
x,+371x.+111x³+145x²+388x+41, e = 95561135039). 
and A's private-key is (d = 5878808345759, g(x) = 
x³+384x²+3x+10, h(x) = x²+376x+43). 
 
Signature generation: Choose m(x) = 1+3x+x² and 
assume that the redundancy function is the identity 
function (for simplicity). Thus, m(x) =1+3x+x². 
Afterwards, A computes 
s(x)  = m(x)d = (1+3x+x²)5878808345759 � 
172x.+86x³+265x²+59x+177 (mod f(x)) and sends s(x) 
to B. 
 
Signature verification: To validate the signature, B 
computes m(x) = s(x)e = 
(172x.+86x³+265x²+59x+177)95561135039 

� 1+3x+x² (mod 
f(x)). So, m(x) = 1+3x+x².MR. Hence, m(x) = 
R−1(1+3x+x²) = 1+3x+x². 
 
RSA signature scheme attack: The security of the 
RSA signature scheme is based on the intractability of 

both the integer factorization problem and the RSA 
problem. Various attack schemes have been studied in 
the literature as well as appropriate measures to 
counteract these threats. Given the public-key, to forge 
the signature, a passive adversary must solve the RSA 
problem. There is no known efficient algorithm for this 
problem. One possible approach, which an adversary 
could employ, is to find the private key. In order to 
attack any protocol that uses the RSA signature scheme 
by finding its private key, the factorization problem 
must be solved first. After factorization, computing the 
value of Euler phi-function and then finding the private 
exponent d using the extended Euclidean algorithm for 
integers could solve the RSA problem. Once d is found, 
the signature can be forged. On the other hand, if the 
classical method is used and an adversary could 
somehow compute d, then n can efficiently be factored 
as follows[4]. This shows that in the classical case, the 
RSA problem and the integer factorization problem are 
computationally equivalent. It is not known if this 
remains true for the modified schemes. In the next 
section we evaluate the various RSA signature schemes 
by recovering the private key using the software 
package Mathematica. We illustrate the attack schemes 
in the following example. 
 
Example: (Attacking the RSA signature scheme). 
Assume that the public key is: (n = 
221806263006661919, e = 39786855994835377). To 
find the private key, we use the built-in Mathematica 
functions FactorInteger and PowerMod. The prime 
factors p and q are obtained from the output of 
FactorInteger[221806263006661919] which is 
{{315841909,1}, {702269891,1}}. Hence, p = 
315841909 and q = 702269891. Next, we calculate �(n) 
= (p−1)(q−1) = (315841909−1)(702269891−1)= 
404098131692231616. The exponent d = 
279550294187496277 is the output of 
PowerMod[39786855994835377, −1, 
404098131692231616]. The private key is (p = 
315841909, q = 702269891, d = 
279550294187496277). 
 
Table 1: Running time in seconds: Classical RSA digital signature 
Size of primes Classical RSA Digital Signature 
 ---------------------------------------------------------- 
 Public Key Signature Verification Public 
50-digit 0.1341 0.002 0.006 
100-digit 1.3801 0.011 0.0151 
200-digit 4.2913 0.0471 0.0851 
250-digit 5.7312 0.0923 0.1374 
300-digit 7.3706 0.144 0.2074 
 
Table 2: Running time in seconds: RSA Digital Signature with 

Gaussian integers 
Size of primes RSA Digital Signature with Gaussian integers 
 ---------------------------------------------------------- 
 Public Key Signature Verification Public 
50-digit 0.1341 0.0912 0.097 
100-digit 1.3801 0.025 0.032 
200-digit 4.2913 0.1101 0.1513 
250-digit 5.7312 0.1883 0.2595 
300-digit 7.3706 0.3035 0.4238 
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Table 3: Running time in seconds: RSA Digital Signature using polynomials 
Prime p Degree d RSA Digital Signature using polynomials 
  ---------------------------------------------------------------------------------------------------- 
  Public Key Signature Verification Public 
p = 2 2 
 d 
 10 0.0331 0.0161 0.0331 
 21 
 d 
 30 1.7188 0.9222 1.6863 
 50 
 d 
 60 15.6215 8.8147 17.211 
p = 101 2 
 d 
 10 1.429 0.3365 0.4305 
 11 
 d 
 20 8.992 3.1823 5.53 
 21 
 d 
 30 45.1559 13.792 14.21275 

 
Testing and evaluation: In this section, we compare 
and evaluate the different classical and modified 
signature schemes by showing the implementation of 
the signature schemes' algorithms with their running 
results. Also, we test the security of the algorithms by 
implementing different attack algorithms to crack the 
encrypted messages. All this is done using Mathematica 
5.0 as a programming language and an Acer computer 
with Intel Pentium M715 processor, 1.5 GHZ CPU and 
256 MB DDRAM. 
 
RSA based digital signature algorithms: Using 
Mathematica 5.0 functions and an additional abstract 
algebra library, we have written programs for the 
following algorithms: 
* Classical RSA digital signature. 
* RSA digital signature with Gaussian integers. 
* RSA digital signature with polynomials over a 

finite field. 
 
 After running the programs, it was clear that these 
programs have applied the RSA signature scheme in the 
correct way. All the programs have generated a public 
and private key with different mathematical concepts. 
Then a message is signed using the signature scheme 
and is sent to a verification procedure which returned 
the original message. The classical and Gaussian 
schemes were tested using the same public-key. The 
average running time of several runs using 50, 100, 
200, 250 and 300-digit primes are given in Tables 1 and 
2. The public-key was generated by randomly selecting 
odd integers having a given number of digits and of the 
form 4k+3. The odd integers were tested for primality 
using the built-in Mathematica function PrimeQ until a 
prime is found. 
         To evaluate RSA algorithms using polynomials, 
we ran programs for various values of the prime p and 
degree of the irreducible polynomials. The average 
running time of several runs are listed in Table 3. The 
public-key was generated using the built-in 
Mathematica function IrreduciblePolynomial[x, p, d]. 
 
Comparing these algorithms, we conclude the 
following: 
* All programs are reliable; they can sign, verify and 

return any message. 

* The running time for the signature/verification 
algorithms is negligible in the classical and 
Gaussian cases. In the polynomial case the time for 
the signature/verification algorithms becomes 
significant for large primes and irreducible 
polynomials with large degree. 

* The complexity for the three programs depends on 
the complexity of generating the public-key. Thus, 
the classical and Gaussian algorithms are 
equivalent since their public-key generation 
algorithms are identical when restricting the choice 
of primes to those of the form 4k+3. The Gaussian 
method is therefore recommended since the 
modified method provides an extension to the 
message space and the public exponent range. 

* The public-key generation algorithm using 
polynomials requires the search for irreducible 
polynomials. The Mathematica built-in algorithm 
for generating irreducible polynomials appears to 
be inefficient as p becomes very large and the 
degree of the polynomial increases. 

 
Attack algorithm: In order to attack any protocol that 
uses the RSA public key signature scheme by finding 
its private key, the factorization problem must be 
solved first. To test the security of the algorithms, we 
implemented attack schemes applied to the classical 
and modified signature scheme algorithms. For the 
classical and Gaussian algorithms, we generated public 
keys using primes of various sizes. The attack was 
conducted using the Mathematica built-in function 
FactorInteger to recover the prime factors. The Euler 
phi-function was then computed. Finally, the private 
exponent was obtained. The average running time of 
several runs are listed in Table 4. 
 
Table 4: Attack time in seconds: Classical RSA digital signature 
 Classical RSA Digital Signature 
 ---------------------------------------------------------- 
Digits of p & q 20 22 24 26 30 
Time 1.406 4.3983 26.3238 65.0656 94.245 

      
 For the RSA algorithms using polynomials, we 
generated a public-key using a prime p of various sizes 
and irreducible polynomials f(x) and g(x) of different 
degrees d. The attack was conducted by factoring f(x) 
using the built-in function Factor[f, modulus->p] to 
recover the irreducible factors. The Euler phi-function 
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was then computed. Finally, the private exponent was 
obtained. The average running time of several runs are 
listed in Table 5. 
 
Table 5: Attack time in seconds: RSA Digital signature using 

polynomials 
 Classical RSA Digital Signature 
Digits of p  5 5 10 22 
Degree d 10 
 d 
 11 12 
 d 
 13 5 
 d 
 6 2 
 d 
 3 
Time 2.373 2.954 0.651 0.231 

 
After running these attack algorithms, we observed the 
following: 
* All the attack programs are reliable so that they can 

sign any message by finding the private key. 
* Attacking the classical and Gaussian RSA 

algorithms is easy if we are dealing with small 
prime numbers. However, when it comes to 100-
digit prime numbers or higher, it needs about many 
computers working in parallel processing to 
compute the prime factorization of the 
multiplication of two 100-digit prime numbers. 

* Attacking the RSA polynomial algorithm becomes 
more difficult as the size of p or the degree of the 
irreducible polynomials become larger. 

 
CONCLUSION 

 
 In this work, we presented the classic RSA 
signature scheme and two of its modifications, namely, 
the RSA signature scheme in the domain of Gaussian 
integers, Z[i] and over quotient rings of polynomials 
over finite fields. We implemented these algorithms and 
tested their efficiency, reliability and security. The 
results obtained showed that all the algorithms applied 
the RSA signature scheme correctly and generated 
public and private key using different mathematical 
concepts. Messages were then signed using the 
signature scheme and were sent in encrypted form to a 
verification procedure which validated the signature 
and returned the original messages. 
 We also built attack scenarios directly aimed at 
solving the factorization problem. We modified the 
RSA attack algorithm to handle the modified 
algorithms. We observed that the Gaussian method is 
preferred since it is as secure as the classical one but 
provides an extension to the message space and to the 
signature exponent range. 
 As for future work, we plan to compare and 
evaluate the efficiency of the modified algorithms using 
very    large    numbers    by   using  parallel  computing  
 
 
 
 
 
 
 
 

techniques. We plan to run the programs in parallel on 
many computers and split the complex mathematical 
calculations between these computers. We plan to write 
a function that is capable of finding any random 
irreducible equation with respect to a specific prime 
number p. We also plan to apply the modified 
algorithms in many fields such as database, 
communications and network security. 
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