
Research Article
An Enhanced k-Means Clustering Algorithm for Pattern
Discovery in Healthcare Data

Ramzi A. Haraty,1 Mohamad Dimishkieh,1 and Mehedi Masud2

1Department of Computer Science and Mathematics, Lebanese American University,
Beirut, Lebanon
2Department of Computer Science, Taif University, Taif, Saudi Arabia

Correspondence should be addressed to Ramzi A. Haraty; rharaty@lau.edu.lb

Received 1 October 2014; Revised 15 December 2014; Accepted 16 December 2014

Academic Editor: Shawon Rahman

Copyright © Ramzi A. Haraty et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The huge amounts of data generated by media sensors in health monitoring systems, by medical diagnosis that produce media
(audio, video, image, and text) content, and from health service providers are too complex and voluminous to be processed and
analyzed by traditional methods. Data mining approaches offer themethodology and technology to transform these heterogeneous
data into meaningful information for decision making. This paper studies data mining applications in healthcare. Mainly, we
study k-means clustering algorithms on large datasets and present an enhancement to k-means clustering, which requires k or
a lesser number of passes to a dataset. The proposed algorithm, which we call G-means, utilizes a greedy approach to produce the
preliminary centroids and then takes k or lesser passes over the dataset to adjust these center points. Our experimental results,
which were used in an increasing manner on the same dataset, show that G-means outperforms k-means in terms of entropy and
F-scores. The experiments also yield better results for G-means in terms of the coefficient of variance and the execution time.

1. Introduction

Nowadays, healthcare data are received from various health-
care service providers including sensory environment to
provide better healthcare services. This data contains details
about patients, medical tests, and treatment. The received
data is very vast and complex; thus, it is difficult to quickly
analyze the data in order to make important decision regard-
ing patient health.Datamining technique is one of the impor-
tant research areas in identifying meaningful information
from huge datasets. In healthcare application, such as a heart
monitoring system, it is an important method for efficiently
detecting unknown and valuable information from huge
heterogeneous health data. In a healthcare application, data
mining techniques can be used to detect unknown diseases,
causes of diseases, and identification of medical treatment
methods. It also helpsmedical researchers inmaking efficient
healthcare policies, constructing drug recommendation sys-
tems, and developing health profiles of individuals [1].

In order to analyze and extract meaningful information
from this complex data a powerful computing tool is neces-
sary. The outcome of data mining technologies is to provide
benefits to a healthcare organization for grouping patients
having similar type of diseases or health issues so that the
organization can provide themwith effective treatments. Var-
ious data mining techniques such as classification, clustering,
and association are used by healthcare service providers for
making a decision regarding patient health conditions.

Classification is one of the well-known and used tech-
niques of data mining in healthcare data analysis. The data
classification approach predicts the target class for each data
point; for example, a patient can be classified as “high risk” or
“low risk” depending on the basis of her/his disease pattern.
There are different classification methods such as 𝐾-nearest
neighbor (𝐾-NN), decision tree, support vector machine
(SVM), and ensemble approach that are used in classification
techniques. Classification is mainly a supervised learning
approach with the assumption of known class categories.

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Article ID 615740

2 International Journal of Distributed Sensor Networks

On the other hand, clustering is an unsupervised learning
technique. Unlike classification, the clusteringmethod has no
predefined classes. In clustering, large datasets are partitioned
into different small subgroups or clusters based on the
similarity measure [2]. This approach is mainly used to
find similarities between data points. Over the years various
clustering techniques are developed and used. The main
feature of clustering is that it needs less or no information for
analyzing the data.

The 𝑘-means clustering algorithm is one of the widely
used data clustering methods where the datasets having
“𝑛” data points are partitioned into “𝑘” groups or clusters.
The 𝑘-means grouping algorithm was initially proposed by
MacQueen in 1967 [3] and later enhanced by Hartigan and
Wong [4]. Bottou and Bengio [5] demonstrated the merging
lands of the 𝑘-means calculations methods and algorithms
methodologies. It has been indicated to be exceptionally
handy for a corpus of commonsense provisions and widely
used applications. The definitive 𝑘-means algorithm works
with in-memory information, yet it could be effectively
stretched out for out-of-memory occupant datasets.

The principal issue with 𝑘-means calculations is that it
makes one probe over the whole dataset on each cycle, and
it needs many such cycles before focalizing to a quality result.
This makes it extremely costly to utilize, especially for sub-
stantially huge local disk datasets. Researchers have focused
on lessening the amount of passes needed for 𝑘-means and,
therefore, increase the performance of the algorithm. On the
other hand, these methodologies just give surmised results,
potentially with deterministic or probabilistic limits on the
nature of the results. A key preference of 𝑘-means has been
that it merges to a local minimum, which does not hold
accurate for the estimated versions [2]. In this manner,
an intriguing inquiry arises: can we have a methodology
of calculation which obliges fewer passes on the whole
dataset and can handle the same converging results as the
fundamental 𝑘-means algorithm?

In this paper, we present one such algorithm, which
we call 𝐺-means. 𝐺-means facilitates the calculation of the
initial centroids using a greedy approach. The rest of the
paper is organized as follows. Section 2 provides background
on clustering algorithms. Section 3 presents related works.
Section 4 offers our proposed approach. Section 5 discusses
the experimental results, and Section 6 concludes the paper.

2. Background

𝑘-means is one of the relaxed unsupervised erudition algo-
rithms that illuminate the well-known clustering issue [3].
The methodology trails after a straightforward and simple
approach to group a given information set through a certain
number of groups (expect 𝑘 groups) that have been estab-
lished beforehand. The principle idea is to characterize 𝑘
centroids, one for each group. These centroids have to be set
in a guile manner resulting in a distinctive area of diverse
effects. In this way, the better decision is to place them as far as
possible fromone another.The subsequent step is to take each
point within a given information set and copartner it with

the closest centroid until reaching a state where all the points
have been associated with a group. Once the first stage is done
and an unanticipated aggregating is carried out automatically,
we need to reconfigure 𝑘 new centroids as barycenters of
each group due to the last step. After producing these 𝑘 new
centroids, another binding must be established between the
same centroids set and the closest new centroid. A cycle will
be produced. As an after effect of this cycle, wemay recognize
that the 𝑘 centroids will change their regulated areas and at
the end of the day centroids will not change their positions
anymore [2, 6].

The objective function is shown below; and thus, the
algorithm aims to reduce the squared error in this function:

𝐽 =

𝑘

∑

𝑗=1

𝑛

∑

𝑖=1

𝑥
(𝑗)

𝑖
− 𝑐𝑗

2

. (1)

The distance indicator of the 𝑛 dataset points is 𝑥(𝑗)
𝑖

and their
represented centroids 𝑐𝑗 are ‖𝑥

(𝑗)

𝑖
− 𝑐𝑗‖
2.

Methodically speaking, the 𝑘-means algorithm is com-
posed of four steps and they are in the following order.

(1) Randomly place 𝑘 elements in a space representing
the items coordinates that are being clustered.

(2) Allocate each item in the space to a group that is the
most similar to it.

(3) After the assignment of all the items in the space,
recompute the 𝑘 centroid elements and change their
positions, respectively.

(4) Repeat steps (2) and (3) until the centroids reach a
position where they no longer change with respect to
the distances between all the elements of their group.

Ultimately, the technique will dependably end; however,
the 𝑘-means calculation does not usually find the most
optimal design, or at least comparing it to the minimum
global objective function that has been stated. The algorithm
is delicate and fundamentally dependent on the beginning
arbitrarily elected group centers.The algorithm should run at
different times to decrease this impact though it will choose
a different set of centroids each time, making it very hard to
compare its initial indications [7]. Algorithm 1 depicts the 𝑘-
means algorithm and its output.

Figure 1 illustrates how the algorithm is run one step at
a time. It demonstrates three groups in a space where 𝑘 is
equal to three, and they are distinguished according to the
colors with their represented data elements (blue, brown,
and green). For additional clarification they are isolated
along three parts. Figure 1(a) is the initial centroids selection
at random where 𝑘 number of initial centroids have been
depicted and accordingly coloring their entire group with the
same color. The centroids are characterized by the plus sign.

In Figure 1(b) four iterations are concluded. The assign-
ment of each element to its closest centroid is done by the
distance calculation between the initial cluster centroids and
every element in the space.The recalculation and deviation of
the cluster centroids are computed at each iteration over this
phase.

International Journal of Distributed Sensor Networks 3

Algorithm: 𝑘-means. The 𝑘-means algorithm for partitioning, where each cluster’s center is represented by the mean value of
the objects in the cluster.
Input:
𝑘: the number of clusters,
𝐷: a data set containing 𝑛 objects.

Output:
A set of 𝑘 clusters.

Method:
(1) randomly choose 𝑘 objects from𝐷 as the initial cluster centers;
(2) repeat
(3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects

in the cluster;
(4) update the cluster means, i.e., calculate the mean value of the objects for each clusters;
(5) until no change;

Algorithm 1: The 𝑘-means algorithm and its output.

Figure 1(c) is where the algorithm converges, reaching a
final position. This is reached when the algorithm compares
the centroids from the last step to its current step and notices
that there are no changes in the centroids; thus, the full
clusters have been reached.

3. Related Works

Clustering is a fairly frequent but very important field
of study, not only for computer scientists but also for
statisticians and patterns recognition experts. There are
vast researches on algorithms that have been developed or
enhanced; we only focus on the works related to our topic of
interest.

An intriguing discovery was achieved by Pelleg and
Moore [8, 9] where they proposed a variant to 𝑘-means
using a methodology called KD tree. This is formed using
a regular tree algorithm, but it has a special data structure
to store the distances between the nodes, which decrease
each cycle of 𝑘-means significantly. However, it does not take
into consideration the number hits made to the disk nor the
number of reads to the database.

Bradley et al. [10] developed an algorithm based on 𝑘-
means. It is a fairly scalable implementation of 𝑘-means,
yet the downside is that it is sequential in nature. Hence, it
takes as much data as possible and pushes it into principle
memory. This can be a huge burden on very large datasets
as the algorithm cannot fit everything into memory. Even
though the authors proposed a fairly complex compression
algorithm to take into account the big data problem, it has
not worked in most of the experimental test cases. Results
from this algorithmhave shown to be slower than the original
𝑘-means but will solve deadlocks produced by the original 𝑘-
means [11]. A simplification to theBradley et al. algorithmwas
developed by Farnstrom et al. [12] to have more compression
force and to lower the memory usage. Their idea is not to
hold everything in the main memory but to have only one-
dimensional array for the correlation coefficient. This can
speed up processing, yet it will only produce the centroid
points, not all the clusters.

The hierarchical clustering algorithm by Forman and
Zhang [13] builds a tree-like structure by incrementing its
indexes and rescans the data on every iteration. Through
this, a BIRCH is created, with a data structure called Cluster
Feature Tree. The advantage of this tree is that each node
has a triple attribute associated with it: the node number,
the weight summation, and the weight summation-squared.
However, the solution provided by the algorithm is an
approximate solution only. The downside is that the size of
the tree can be hard to manage on a large scale since if it does
not fit into memory, then BIRCH will become unusable.

Another heuristically defined algorithm is CURE [14].
It is called CURE because it is suggested to be a cure for
clustering very large databases. It uses random sampling, and
then it partitions the data into smaller groups. Afterwards,
it commences the calculations for each smaller group and
compares the groups together. Subsequently, it will merge
each two groups that have a similarity function less than a
certain threshold and will pick up the centroid of the new
group by recalculating the mean for all the points, exactly
as 𝑘-means does. The algorithm keeps on looping until it
finds all the corresponding clusters that cannot be merged
anymore. The results produced provide only an approximate
answer.

Nittel et al. [15] also proposed a heuristic algorithm for
out-of-core clustering. The authors’ idea is to split the data
into the maximum that the main memory can handle and try
to scan the entire memory only once then run the 𝑘-means
algorithm on the data chunks accordingly.

Samatova et al. [16] created a statistical approach to
parallel clustering; the algorithm is backed up by a data
structure based on dendrograms. As the authors try to merge
from a local dendrogram to a global one using each iteration
of the algorithm to collect data and based on a previously
defined threshold, the algorithm will keep on iterating until
the threshold is reached.The algorithmwas experimented on
large datasets and was not efficient because the structure of
the dendrogram kept on growing and at a certain point in
time went out of memory. The significance of their approach
is using parallel clustering, which means that not only one

4 International Journal of Distributed Sensor Networks

3

2.5

2

1.5

0.5

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x

y

1

Iteration 1

(a)

3

2.5

2

1.5

0.5

0

−2 −1.5 −2 −1.5

−2 −1.5 −2 −1.5

−1 −0.5 0 0.5 1 1.5 2

x

1

Iteration 4 Iteration 5

Iteration 2 Iteration 3

3

2.5

2

1.5

0.5

0

−1 −0.5 0 0.5 1 1.5 2

x

yy
1

2.5

2

1.5

0.5

0

−1 −0.5 0 0.5 1 1.5 2

x

y y
1

33

2.5

2

1.5

0.5

0

−1 −0.5 0 0.5 1 1.5 2

x

1

(b)

3

2.5

2

1.5

0.5

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

y

1

x

Iteration 6

(c)

Figure 1: (a) Initial centroids depiction. (b) Repositioning of centroids. (c) 𝑘-means converges.

International Journal of Distributed Sensor Networks 5

dendrogram but also multiples were being produced at a
single run; when a dendrogram reaches a certain threshold
that has been previously defined, it will be merged with other
ones until they construct final dendrograms each of which
is considered a cluster, and the root of the tree-like structure
is the centroid. A fairly similar approach was attempted by
Parthasarathy and Ogihara [17], starting from the bottom up,
yet dealing with distance metric formation by applying an
association rule to the localized data. A high dimensional
clustering with the help of distributed clustering combined
the work of Kargupta et al. [18] and Januzaj et al. [19] yet
the later one initiated the idea of converging from a local
cluster into a global one, taking into consideration multiple
clusters formation.These algorithms, however, do not end up
producing an exact solution.

Fradkin and Madigan [20] developed a variation of 𝑘-
means clustering to compress images which they called
“divisive 𝑘-means.” Their approach requires very powerful
machines to get accurate results.

In the advancement of clustering and computational
power, there were many trials to parallelize 𝑘-means. Some
of these works that relate to CLARANS [21] and BIRCH [13]
deal with memory allocation and heuristics. Yet most of the
clustering is done in one of two ways, either partitional or
hierarchical. These approaches deal with all the data that
needs to be clustered, yet some of the techniques filter the data
before performing the actual clustering to minimize the size
of the dataset first and then enhance the resulting clusters.

A recent framework proposed by [22] is to divide the
clustering methodology into several stages. The work tailors
streamed data. Their algorithm stores statistical information
about the upstream data while another process sums up the
collected information according to certain criteria character-
ized by the 𝑘 constant number of clusters and the records
per frame. It is a pyramid-like approach that keeps collecting
the offline data and keeps a portrait of each cluster at a
preference time frame.The experimental work conducted on
a real database showed promising results in both efficiency
and accuracy of the proposed solution.

Arthur and Vassilvitskii [23] propose a way of initializing
𝑘-means by choosing random starting centers with very
specific probabilities. The authors select a point 𝑝 as a
center with probability proportional to 𝑝’s contribution to
the overall potential, leading to the algorithm 𝑘-means++.
The authors provided preliminary experimental data showing
that, in practice, 𝑘-means++ outperforms 𝑘-means in terms
of both accuracy and speed.

Celebi et al. [24] investigate the initialization methods
developed for the 𝑘-means algorithm. The authors demon-
strate that the eight most popular initialization methods
often perform poorly and that there are alternatives to these
methods.

Himanshu and Srivastava [25] implemented a document
clustering technique using singular vector decomposition
to find out the number of clusters required (i.e., the value
of k). The authors used the 𝑘-means algorithm to create
clusters. These clusters are then refined by feature voting.
This refinement phase enabled the algorithm to run more
efficiently than the classic 𝑘-algorithm.

Polczynski and Polczynski [26] labelled common meth-
ods for classifying choropleth map features which typi-
cally form classes based on a single feature attribute. This
methodology note reviews the use of the 𝑘-means clustering
algorithm to perform feature classification usingmultiple fea-
ture attributes. The authors describe the 𝑘-means clustering
algorithm and compare it to other common classification
methods. The authors also provide two examples of choro-
pleth maps prepared using 𝑘-means clustering.

4. The Proposed Approach

Theessence behind our algorithm,𝐺-means (with the𝐺 from
the Greedy algorithm and the means from 𝑘-means since
we use the same distance and similarity functions), is to
facilitate the calculation of the initial centroids using a greedy
approach; we believe that the 𝑘-means’ original algorithm
needs improvement with the initial random selection of the
centroids array. Hence, our initial step is to calculate all of the
existing elements that have the highest degree in the space;
from there we can have an initial configuration of what the
clusters should look like. On the second run, we eliminate all
the centroids that are in a single cluster and select 𝑘 clusters
with the highest results of the similarity function to be taken
as the real cluster centroids. This being done, we iterate on
the rest of the data elements to see if the centroids are going
to change. This will be performed exactly like the original 𝑘-
means with both the distance and similarity functions [27,
28].

The given input to the𝐺-means algorithm is a graphG(V,
E) and a constant 𝑘where𝑉 is the set of vertices (elements in
the graph) and 𝐸 is the set of edges (connections between the
vertices), also noting that 𝐺 is an undirected graph, which is
the maximum number of clusters that should be generated
[29]. The computational steps of 𝐺-means are as follows.

(1) The initial step is to pass through the entire dataset
and identify the points with the highest degrees (i.e.,
the points that are the most close to the neighboring
points). This constitutes the greedy part in the algo-
rithm.

(2) Compare these elements and consider how they are
according to 𝑘 number of clusters.Then, choose the 𝑘
highest number of vertices.

(3) Read through the entire database, without going over
the elements of the centroid array, and check the
similarity and distance functions from each centroid
in the clusters to all its elements.

(4) Each element that is read has either one of these
options (with either the distance or similarity func-
tions):

(a) to be placed in the same cluster as the centroid
array, thus dropping it, and the algorithm will
never pick it up again;

(b) to be kept for later lookup for a potential cen-
troid (at a later run) since the distance function
is indicating that it should be in another cluster;

6 International Journal of Distributed Sensor Networks

Input: Graph 𝐺(𝑉, 𝐸) and constant 𝑘
Output: 𝑘 cluster centers
Begin

CentriodsArray[𝑘][Vertices] ← NULL;
ColorArray[Vertices]← NULL;
Read entire dataset;
Create the DegreeArray array;
Create a variable for number of runs called Runs;
For each 𝑘 Do

GetMax(DegreeArray);
Add CentriodsArray[𝑘][0] = Vertex;
Set the degree of the vertex to −1;
Set the color array of the vertex to 𝑗;
Increment 𝑗 and Runs;
Decrement 𝑘;

End
While Runs != 𝑘 OR ColorArray has zerosDo

Read the entire dataset;
Identify the neighbors of the centroid elements;
Color them color the same as the centroid;
If neighbor is a centroid or an item is a centroid

Add CentriodsArray[Centroid][Vertex] = Vertex;
End
For each 𝑘 Do

ResultsArray[𝑘] = CentroidArray[𝑘][0];
End

Output ResultsArray;
End

Pseudocode 1

(c) to replace the current centroid and, thus, will
win both the similarity and distance vector
(since we are taking the highest degree element;
this is a very rare case where both elements
could be centroids, yet the 𝑘 integer is smaller
than the number of clusters).

(5) The algorithm will keep on iterating and keep taking
into account the (4(b)) part of the algorithm where
these points could end up to be what is called
“Boundary Points” of each 𝑘 cluster.

(6) If the run does not change anything in the centroids
array, then we declare that it has successfully con-
verged and display the centroids array.

(7) To display each cluster, loop once through the cen-
troids array and match the centroids color with the
elements colors as to display the entire group.

4.1. Pseudocode. The pseudocode of the algorithm is shown
in Pseudocode 1.

4.2. An Example. In this section, we demonstrate how the
proposed algorithm works through two examples. In both
examples, we use the same number of elements, but the
difference will be the 𝑘 constant number of resulting clusters
and the number of centroids. Figure 2(a) represents the initial

state of the connected graph. Each rounded point represents
an element in this space.

In the second part, the algorithm picks up the total
elements with highest degree regardless of 𝑘. Figure 2(b)
illustrates these selections with the rounded red mark.

The algorithm will now compare the centroid selection
with the constant 𝑘 to give a precise number of elements in
the centroids array. We consider two examples: the first when
𝑘would be equal to three and the next when 𝑘 is equal to four.

Figure 2(c) denotes the centroids pickup when 𝑘 is equal
to three. The selection was made according to the distance
function and the highest number of elements inside each
group. The new centroids are the elements circled in purple.

For the purposes of this example, we assume that the
centroids are not going to change, yet when the algorithm
runs, it will color each of the elements to its corresponding
centroid. Figure 2(d) depicts that the algorithm has success-
fully converged, resulting in three clusters and their centroids
colored in black. Their unique shape defines each cluster.

The next example is constant 𝑘 = 4. We illustrate in this
example how the distance and similarity functions come into
the picture where they play a very important role in choosing
the resulting centroids.The initial centroids selections are not
going to change, yet the change is going to reside in the second
step where the centroids are being compared to the constant
𝑘. Figure 2(e) shows that the algorithm faces a dilemmawhere
the chances are the same for both of the points circled in red.

International Journal of Distributed Sensor Networks 7

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9

(a)

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9

(b)

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9

(c)

10

8

6

4

2

0

−2

0 1 2 4 6 8 10

(d)

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9

(e)

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9

(f)

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9

(g)

Figure 2: (a) Initial cluster space. (b) Initial centroids selection. (c) Centroids selections 𝐾 = 3. (d) The algorithm converges. (e) Centroid
selection problem. (f) Correct centroids selection. (g) Algorithm converges.

8 International Journal of Distributed Sensor Networks

This is a common problem in all the greedy approaches
where each element has the same number of connected
nodes. But in this case, the similarity functions get in the way
where both of the neighboring elements of point (6, 5) are
centroids yet point (5, 4) has an element that is not a centroid.
And if the first element is picked up, then the resulting cluster
will be based on a single element; thus, the algorithm will
pick up the second element and denotes it as a centroid in
the centroids array. Figure 2(f) shows the correct selection of
the centroids according to the similarity function rules.

Figure 2(g) depicts how the algorithm converges, and the
successful four clusters with their centroids are colored in
black. Their unique shape defines each cluster.

5. Experimental Results

We compare the 𝑘-means and 𝐺-means according to the
entropy of the algorithm, in other words, the program-size
complexity from the pseudocode and the actual Java code (or
the complexity of the algorithm and program size). Another
comparison is called the 𝐹-score or 𝐹-measure complexity
for measuring the test results accuracy. We also compare the
coefficient of variance and the execution time. And, finally,
we will compare both algorithms’ complexities using the Big
𝑂 notation even if the variation of the algorithms is small
compared to running time [30]. All of the tests are done in
an increasing matter; this is to see how both are reacting with
the given datasets.

The dataset corresponded to a survey where respondents
were solicited to record up to 14 from their unsurpassedmost
loved movies. The exploration group classified their judged
class as “fit” and arranged movies referred to by respondents.
The type, characteristics, plots, and topics convey socially
imparted significances, and those criteria are a regular rear-
ranging mechanism (or heuristic) on which gatherings of
people base their preferences. The classifications used are
based on Litman’s framework [31]. This involved utilizing the
grouping strategies connected by the neighborhood motion
picture rental stores and portrayals furnished by later film
guides.

The survey was presented to 600 applicants. Applicants
were divided into 295 males and 305 females, with ages
ranging between 13 and 65; their educational background
ranges from students in high school to holders of Masters
Degrees. Their racial/ethnic identity was also captured and
they are as follows: Asians totaling 102, Whites totaling 220,
Hispanics totaling 162, and African Americans totaling 82
and 6 people did not specify any group.

The Movies Genre classifications that were introduced
are action, adventure, animation, biography, comedy, crime,
documentary, drama, family, fantasy, history, horror,musical,
mystery, romance, sci-fi, sport, thriller, war, and western.

The information examination is introduced in the follow-
ing manners [32, 33]:

(1) with regard to all the referenced movies (in all the
future references designated as All Cited Films), all
the correspondents andmovieswere referred to by the
demographic locations;

k-means
G-means

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

50 100 200 300 400 500 600

En
tro

py

Number of items in the dataset

Figure 3: Complexity comparison.

(2) with regard to all the referenced top movies (will be
referenced as Top 25), respondents rank movies in
this record as far as their recurrence of reference;
occasionally, due to ties, certain Top 25 records will
hold more than 25 movies; to utilize one tied film and
not an alternate would just be an alphabetic choice;
this manner was chosen to sporadically run over the
point of confinement of 25 for purposes of delegate
exactness.

For all the correspondences taken by the 600 applicants,
the number of citations is 1,703; if we included the reoc-
currences of the same movie, the citation would increase to
6,102. This concluded that the average of correspondent is
around 10.7, taking into consideration the contrast between
the cited movies referred to by assembling each and every
demographic class with the reference to movie genre, gender,
or ethnicity.

The first test is the program complexity-size in relation to
an increase in the dataset size; this is what is called the entropy
[34].This is done by taking both algorithms and testing them
on each set of data and noting down the results accordingly.

Figure 3 shows that when we increase the dataset size,
the entropy increases and the quality of the cluster decreases
in 𝑘-means. 𝐺-means, on the other hand, provides a con-
sistent increase in the complexity of the application, yet
the cluster quality did not decrease; this is because of the
greedy approach; to have the same results each time we run
algorithm on the same set of data.

The second part of our comparison is the binary clas-
sification that is known as the 𝐹-score or 𝐹-measure. The
𝐹-measure considers both the precision and the recall of
the test to compute the score [7]. This test compares not
only the results accuracy, but also the performance of both
algorithms. In the context of clustering, the f-measurement
or precision of the resulting clusters, also called positive
predictive value, is when comparing the resulting clusters to
the actual classification of the real-world example [35].When
we get the results of, say, the first cluster, we compare it to the
real example results and get the 𝐹-measure.

International Journal of Distributed Sensor Networks 9

k-means
G-means

0

0.2

0.4

0.6

0.8

1

1.2

50 100 200 300 400 500 600
Number of items in the dataset

F
-m

ea
su

re

Figure 4: 𝐹-score of 𝑘-means and 𝐺-means.

In the movies dataset we compared the results from the
surveys sent to real people and how manual classifications
were conducted versus the results of the clusters from the
𝐺-means and 𝑘-means algorithms. This comparison showed
that 𝐺-means gave good measures in comparison with 𝑘-
means, taking into consideration the error percentage that
might also be in themanual classification. For example, in the
surveys, we obtained three clusters so k (number of resulting
clusters) is 3. We begin by taking each cluster and comparing
it to the resulting clusters. The first cluster has 23 elements
and the algorithmic cluster has 25 elements; consequently,
and depending on the precision of error, we have a rate 23/25
= 92%. As we did in the earlier test, we held multiple tests
and chose the mean for each one increasing the dataset size
gradually.

Figure 4 depicts the comparison line between the results
of 𝑘-means and𝐺-means; sincewe aremeasuring the𝐹-score,
we notice that the 𝐺-means measure is higher than 𝑘-means
and much more stable.

We also compare the coefficient of variance; this is a
very importantmeasure statistically because it normalizes the
whole algorithm (i.e., test the coefficient of variance without
taking into consideration the complexity of the algorithm
and the complexity of the datasets) [36]. The coefficient of
variation is defined as the ratio of the standard deviation to
themean. It shows the extent of variability in relation tomean
of the population.

Considering the same dataset and conducting simulta-
neous experimentation, we obtain the results depicted in
Figure 5.The results show thatwhenever the datasets are large
to reach (approximately from 5 or more 𝑘 constant), then the
variant for 𝐺-means drops drastically. This is because all of
the factors in the algorithm have been rounded together to
form this intriguing result.

Our next comparison deals with the execution time of
each algorithm. The execution time is from the initial 𝑘
constant determination until the algorithm converges, with-
out taking into consideration any kernelization done before
the start of the algorithm or any output design that should,

k-means
G-means

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 200 300 400 500 600

C
oe

ffi
ci

en
t o

f v
ar

ia
nc

e

Number of items in the dataset

Figure 5: Coefficient of variance of 𝑘-means and 𝐺-means.

0

20

40

60

80

100

120

140

160

180

50 100 200 300 400 500 600

C
oe

ffi
ci

en
t o

f v
ar

ia
nc

e

Number of items in the dataset

k-means
G-means

Figure 6: Running time of 𝑘-means and 𝐺-means.

for example, draw the clusters with their corresponding
centroids. We differentiate the iteration by the number of
elements inside each dataset as we increase the numbers
gradually to see how the algorithms react to such cases.

The results, depicted in Figure 6, show that when we
increase the dataset, the increase of the execution time for
𝑘-means is almost constant, yet the bulk running time of 𝐺-
means becomes at the start much higher; as we increase the
dataset, it is increasing at less time at each run. This is due
to the fact that the 𝐺-means has a nearly constant time for
initial centroid selection and cluster classification which at
this stage takes a large amount of execution time. Also, the
iterations that will follow the initial step are minimal; thus it
is concluded that when the dataset number of items increases,
𝐺-means will start to converge faster than the regular 𝑘-
means.

The complexity of the 𝐺-means algorithm is represented
as𝑂(𝑛 ∗ 𝑘 ∗ 𝑖 ∗ 𝑑) where 𝑛 is the number of elements, k is the
number of clusters, i is the number of iterations, and 𝑑 is the

10 International Journal of Distributed Sensor Networks

number of attributes. The notation can be simplified because
𝑘 and 𝑑 are constants and the number of iterations in a worst
case scenario can be the same as the number of elements in
the space. Thus, the formula can be reduced to a constant 𝐶
multiplied by (𝑛 ∗ 𝑛). The final resulting function since the
constant will be removed is 𝑂(𝑛2). This is also the worst case
of 𝑘-means; the only difference would be the constant that
will be applied to it.

6. Conclusion

There are many research efforts devoted to clustering based
on similarity matrices, yet there are no algorithms that use
a greedy approach and get to the same or slightly different
results as the 𝑘-means algorithm. In this paper, we presented
a new technique that can cluster very large data whereby
sometimes 𝑘-means could not, whileminimizing the number
of reads of the entire dataset. As for future work, we plan
on forming a distributed version of the 𝐺-means algorithm,
where data or even computational power could be spread over
different remotemachines. Another idea that we are currently
contemplating is that most of the clustering algorithms deal
with a constant 𝑘 number of clusters, where in fact this
hinders the basic idea of why we are doing the clustering.
Consequently, we plan on directing our efforts towards
handling a variable 𝑘 instead of a constant one as this is very
helpful in real-world examples where data is always changing
and 𝑘 cannot be fixed. We also plan to work on clustering
algorithm kernelization; this means that both the algorithm
and data taken should be preprocessed using specific rules so
that they can enhance the performance and the results of the
clustering algorithm.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was funded by the Lebanese American University,
Beirut, Lebanon.

References

[1] H. C. Koh andG. Tan, “Datamining applications in healthcare,”
Journal ofHealthcare InformationManagement, vol. 19, no. 2, pp.
64–72, 2005.

[2] B. Kulis and M. I. Jordan, “Revisiting k-means: new algorithms
via Bayesiannonparametrics,” inProceedings of the 29th Interna-
tional Conference onMachine Learning (ICML ’12), pp. 513–520,
Edinburgh, UK, July 2012.

[3] J. B. MacQueen, “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability, pp. 281–
297, University of California Press, 1967.

[4] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: a k-means
clustering algorithm,” Journal of the Royal Statistical Society,
Series C, vol. 28, no. 1, pp. 100–108, 1979.

[5] L. Bottou and Y. Bengio, “Convergence properties of the k-
means algorithms,” in Advances in Neural Information Process-
ing Systems 7, G. Tesauro and and D. Touretzky, Eds., pp. 585–
592, MIT Press, New York, NY, USA, 1995.

[6] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice Hall, Upper Saddle River, NJ, USA, 1988.

[7] D. Abrams and A. Hogg, Social Identity Theory: Constructive
andCritical Advances, HarvesterWheatsheaf,HemelHemstead,
UK, 1990.

[8] D. Pelleg and A. Moore, “X-means: extending k-means with
efficient estimation of the number of clusters,” in Proceedings of
the Seventeenth International Conference on Machine Learning,
Palo Alto, Calif, USA, 2000.

[9] D. Pelleg andA.Moore, “Accelerating exact k-means algorithms
with geometric reasoning,” in Proceedings of the 5th Interna-
tional Conference of Knowledge Discovery and Data Mining, pp.
277–281, San Diego, Calif, USA, August 1999.

[10] P. S. Bradley, U. Fayyad, and R. Reina, “Scaling clustering algo-
rithms to large databases,” in Proceedings of the 4th International
Conference on Knowledge Discovery and Data Mining, 1998.

[11] T. Zhang, R. Ramakrishnan, andM. Livny, “BIRCH:An efficient
data clustering method for very large databases,” In Proceedings
of the ACM SIGMOD International Conference on Management
of Data, vol. 25, no. 2, pp. 103–114, 1996.

[12] F. Farnstrom, J. Lewis, and C. Elkan, “Scalability for clustering
algorithms revisited,” ACM SIGKDD Explorations Newsletter,
vol. 2, no. 1, pp. 51–57, 2000.

[13] G. Forman and B. Zhang, “Distributed data clustering can be
efficient and exact,” ACM SIGKDD Explorations Newsletter, vol.
2, no. 2, pp. 34–38, 2000.

[14] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering
algorithm for large databases,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’98), pp. 73–84, Seattle, DC, USA, June 1998.

[15] S. Nittel, K. T. Leung, and A. Braverman, “Scaling clustering
algorithms for massive data sets using data stream,” in Proceed-
ings of the 19th International Conference on Data Engineering,
U. Dayal, K. Ramamritham, and T. M. Vijayaraman, Eds., IEEE
Computer Society, Bangalore, India, 2003.

[16] N. F. Samatova, G. Ostrouchov, A. Geist, and A. V. Melechko,
“RACHET: an efficient cover-based merging of clustering
hierarchies from distributed datasets,” Distributed and Parallel
Databases, vol. 11, no. 2, pp. 157–180, 2002.

[17] S. Parthasarathy and M. Ogihara, “Clustering distributed
homogeneous datasets,” inPrinciples ofDataMining andKnowl-
edge Discovery, vol. 1910 of Lecture Notes in Computer Science,
pp. 566–574, Springer, Berlin, Germany, 2000.

[18] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson,
“Distributed clustering using collective principal component
analysis,” Knowledge and Information Systems, vol. 3, no. 4, pp.
422–448, 2001.

[19] E. Januzaj, H. P. Kriegel, andM. Pfeifle, “Scaling clustering algo-
rithms for massive data sets using data stream,” in Proceedings
of the Workshop on Clustering Large Datasets (ICDM ’03), 2003.

[20] D. Fradkin and D. Madigan, “Experiments with random pro-
jections for machine learning,” in Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 517–522, August 2003.

[21] Y. Ioannidis and V. Poosala, “Balancing histogram optimality
and practicality for query result size estimation,” in Proceedings
of the ACM SIGMOD International Conference on Management
of Data (SIGMOD ’95), vol. 24, pp. 233–244, 1995.

International Journal of Distributed Sensor Networks 11

[22] C. C. Aggawal, J. Han, J. Wang, and P. S. Yu, “A framework
for clustering evolving data streams,” in Proceedings of the 29th
International Conference on Very Large Data Bases (VLDB ’03),
Elsevier, 2003.

[23] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of
careful seeding,” in Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, pp. 1027–1035, 2007.

[24] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative
study of efficient initialization methods for the k-means clus-
tering algorithm,” Expert Systems with Applications, vol. 40, no.
1, pp. 200–210, 2013.

[25] G. Himanshu and R. Srivastava, “k-means based document
clustering with automatic ‘k’ selection and cluster refinement,”
International Journal of Computer Science and Mobile Applica-
tions, vol. 2, no. 5, pp. 7–13, 2014.

[26] M. Polczynski and M. Polczynski, “Using the k-means clus-
tering algorithm to classify features for choropleth maps,”
Cartographica, vol. 49, no. 1, pp. 69–75, 2014.

[27] P. Berkhin, A Survey of Clustering Data Mining Techniques,
Springer, Sunnyvale, Calif, USA, 2006.

[28] N. Silvia, T. L. Kelvin, and A. Braverman, “Scaling clustering
algorithms for massive data sets using data stream,” in Proceed-
ings of the 20th International Conference on Data Engineering,
IEEE, April 2004.

[29] R. Haraty, N. Mansour, and B. Daou, “Regression test selection
for database applications,” in Advanced Topics in Database
Research, K. Siau, Ed., vol. 3, pp. 141–165, IdeaGroup Publishing,
Hershey, Pa, USA, 2004.

[30] P. S. Bradley, U. Fayyad, and C. Reina, “Scaling clustering algo-
rithms to large databases,” in Proceedings of the 4th International
Conference on Knowledge Discovery and Data Mining, 1998.

[31] B. R. Litman, “Predicting success of theatrical movies: an
empirical study,” The Journal of Popular Culture, vol. 16, no. 4,
pp. 159–175, 1983.

[32] S. Andrews, “Film: the great divide; the sexes at the box office,”
New York Times, vol. 2, p. 15, 1993.

[33] B. A. Austin, “Motivations for movie attendance,” Communica-
tion Quarterly, vol. 34, no. 2, pp. 115–126, 1986.

[34] A. W. Moore, “Efficient memory-based learning for robot
control,” University of Cambridge. Development Report web-
site, 1991, http://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-209.html.

[35] N. Mansour, R. A. Haraty, W. Daher, and M. Houri, “An auto-
indexing method for Arabic text,” Information Processing and
Management, vol. 44, no. 4, pp. 1538–1545, 2008.

[36] E. J. Dries and G. L. Peterson, “Scaling ant colony optimiza-
tion with hierarchical reinforcement learning partitioning,”
in Proceedings of the 10th Annual Genetic and Evolutionary
Computation Conference (GECCO ’08), pp. 25–32, BiblioBazaar,
Atlanta, Ga, USA, July 2008.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

