
JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014 415

The TOR Data Communication System
Ramzi A. Haraty and Bassam Zantout

Abstract: Since the day the Internet became a common and re-
liable mechanism for communication and data transfer, security
officers and enthusiasts rallied to enforce security standards on
data transported over the globe. Whenever a user tries commu-
nicating with another recipient on the Internet, vital information is
sent over different networks until the information is dropped, in-
tercepted, or normally reaches the recipient. Critical information
traversing networks is usually encrypted. In order to conceal the
sender’s identity, different implementations have proven success-
ful - one of which is the invention of anonymous networks. This
paper thoroughly investigates one of the most common and exist-
ing techniques used during data communication for avoiding traffic
analysis as well as assuring data integrity - the onion router (TOR).
The paper also scrupulously presents the benefits and drawbacks
of TOR

Index Terms: Anonymous system, data communication, security
and integrity, the onion router (TOR).

I. INTRODUCTION

Onion routing was originally prototyped by Sun Solaris
2.5.1/2.6 with implementations for web browsing, remote login,
and sanitizing user information while transmitting information
through data streams. The idea and further implementation of
onion routing was based on the work of David Chaum (Chaum
mixes) and further continued and enhanced by Michael G. Reed,
Pal F. Syverson, and David M. Goldschlag from the US Naval
Research Laboratory [1].

In 1995, the US Navy Office of Naval Research (ONR)
sponsored the aforementioned authors to work on an anony-
mous communication mechanism that allows computer users
to send and receive information over the Internet while re-
maining anonymous, as well as, preventing against traffic anal-
ysis and eavesdropping. In 1997, the project was funded by
the United States Department of Defense Advanced Research
Projects Agency (DARPA) under the high confidence network
program, and more work was put on the original design and
components of the algorithm and implementation. In 1998, a
prototype of the project was running with an average 50,000
hits per day with a peak of 84,022 simultaneous connections on
the system. DARPA and other sponsors of this project were also
interested in applying the same onion routing methodology not
only Internet appliances, but also on cell phones and other com-
munication devices not necessarily using the Internet in order to
achieve anonymity [2].

Little work and improvements were added to onion during the

Manuscript received April 12, 2014.
This work was funded by the Lebanese American University.
Authors are with the Department of Computer Science and Mathemat-

ics, Lebanese American University, Beirut, Lebanon 1102 2801, email:
rharaty@lau.edu.lb, bassam.zantout@lau.edu.

Digital object identifier 10.1109/JCN.2014.000071

past decade due to lack of funding and interest. To this date the
onion router (TOR) and the onion routing project are funded by
ONR and DARPA whereby it is still under development with
probably one of the largest testing labs in the world, the In-
ternet. TOR operates with almost 900 dedicated onion routers
worldwide, generating and processing 960 Mb/sec of bidirec-
tional data streams [3], [4].

This paper investigates the implementation of TOR, which
is widely used today and has made a major impact on the
world of networking and particularly peer-to-peer communica-
tion. The remainder of the paper is organized as follows: Sec-
tion II presents background material. Section III concentrates on
TOR, outlining its features, advantages as well as its drawbacks.
Section IV provides a conclusion.

II. BACKGROUND

Prior to onion routing, a previous implementation based on
a simple model by David Chaum of the University of Califor-
nia, Berkeley [5] was introduced to solve this problem of source
and destination identification through traffic analysis avoidance.
Chaum mixes is a simple process where the identity of the
sender is hidden from the receiving entity. All traffic sent back
and forth from sender to receiver goes through a proxy that is
able to sanitize sender and/or receiver information if need be;
however, since the sender is the focus of the problem then the
receiver’s identity is kept as is. The proxy in this case is the
only entity that can keep track of sender and receiver identities.
Chaum mixes use a series of private and public keys whereby the
sender trusts a single entity with its keys to encrypt and decrypt
messages and data before sending information to the receiver.
The trusted entity then relays the sanitized information that can
be either encrypted (or not) to the receiving party.

Once the receiver (Beta in this case) answers Alpha’s request
and is ready to send back information, it does not know who and
what Alpha is and only sends back information to the visible en-
tity that sent the request that exited in this case from Cathy, who
in return relays what Beta sent to Alpha. Chaum mixes started
as a good idea with a single trusted entity to conceal the iden-
tity of the sender or the sender and receiver if need be. However
while the aim of this model is to avoid traffic analysis occur-
ring after traffic is generated by Alpha, other types of attacks
such as timing attacks can be performed to determine that Alpha
is indeed talking to Beta. This, although may not compromise
the integrity of the data, does not prevent against traffic analy-
sis. Due to timing and other types of attacks, different chains
of Chaum mixes were added to the network creating “Chained
Chaum Mixes”. Chaum Mixes was a bright idea for hiding and
“anonymizing” the identity of the sender and receiver; however,
Chaum mixes where still susceptible to end-to-end attacks on
trusted entities with time based attacks to determine the sender
and receiver. Add to that the overhead of using public and private

1229-2370/14/$10.00 c© 2014 KICS

416 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

key encryption and decryption which had computation overhead
back in the mid-1980s. Although Chaum mixes was lightly im-
plemented and tested, a new algorithm and methodology in-
spired by David Chaum’s algorithm saw the light in 1995 called
onion routing.

III. TOR

A. Onion Routing to TOR

Onion routing promised not only to protect the integrity and
confidentiality of data but also against eavesdropping and traffic
analysis over the network and the Internet. Goldschlag, Reed,
and Syverson identified [1], as David Chaum did, that there are
two entities to protect, the data and the identity of that data.
They have also investigated and considered that the possibility
for malicious attackers being able to eavesdrop at any part in the
physical network is eminent and therefore trusted entities may
no longer be trusted (the mailman cannot be trusted with the re-
cipient and sender’s addresses). As a result, the authors of the
onion routing project devised a way to limit the knowledge of
this information as much as possible while achieving high lev-
els of anonymity. Onion routing protects against traffic analysis
attacks mainly because the sender does not talk directly to the re-
cipient (similar to Chaum Mixes). Instead, it initiates a connec-
tion with an application-specific router called the “onion routing
proxy” that will be able to handle the TCP and Socks request of
that client. Before describing the details of TOR, it is important
to mention that many implementations at the time were able to
achieve anonymity of the sender and receiver with some draw-
backs or at a certain cost for which these implementations could,
to a certain, extent prevent against traffic analysis. Anonymizer
[6], JAP [7], Miximinion [8], Tarzan [9], and Morphmix [10]
are examples of such solutions offered at the time TOR was be-
ing developed. However, TOR has one major advantage over the
other implementations, the number of clients using TOR, which
provided the project priceless information and test results since
all testing was done on the Internet.

TOR is the descendant of the onion routing project whereby
the project has inherited many of the design concepts introduced
by onion routing. TOR is a collection of onion routers, which
have different functions and roles in a network and during net-
work communication. Each router sends information in a secure
way to the next hop in a TOR network whereby if any sin-
gle router in the set of onion routers is compromised, then this
breach will not affect the anonymity as well the data communi-
cation sent to and from the sender and receiver. Fig. 1 sheds light
on what goes on behind the scenes. The software client down-
load contains a TOR directory fetcher, which is able to talk to
the TOR root servers and acquire the latest onion routers avail-
able worldwide. These root servers are monitored and managed
by official TOR personnel. TOR nodes can be managed by TOR
enthusiasts for whom anyone can become a server acting a TOR
onion router.

B. TOR: Second Generation Onion Routing

Just like Chaum mixes, TOR aims at hiding the communica-
tion between the initiator and the target host for which the initia-
tor needs to communicate with, and just like Chaum mixes TOR

Fig. 1. A snapshot of TOR in action where multiple routes are being
selected.

utilizes a series of proxies and makes communication travel
through a number of hops before it connects the initiator with the
target. Given the aforementioned, one may realize that the more
the number of nodes, the more secure a connection becomes
since tracking communication will be difficult from sender to
receiver. Moreover, the more the number of nodes the more la-
tency is added to the connection; and for low latency connec-
tions such as Secure Shell, Telnet, and other interactive appli-
cations using a high latency connection becomes impossible to
work with. Hence, there is a trade off between a secure connec-
tion that enables anonymity and that is able to use a certain num-
ber of hops while keeping connection latency bearable. After
plenty of testing and research TOR was designed to route con-
nections through three intermediate TOR nodes and a last exit
node before leaving the TOR network and delivering the com-
munication to the receiver. A total of four nodes are involved
in any TOR communication. While a client is connected to the
TOR network using a specially developed TOR application, data
is sent through the TOR network in an encrypted format with
fixed size packets called “cells”. Cells can fit 498 bytes and are
only exchanged between the TOR nodes and the client using
the TOR application. The recipient is not aware nor does the
recipient participate in the TOR network. The cells in a TOR
network have a fixed size so that snoopers are not able to detect
the type of communication being transmitted from the sender, as
well as, the response returned back from the TOR nodes. There-
fore, having constant packet size camouflages the type of data
being exchanged. TOR cells could either contain data or TOR
instructions for initiating new circuits or giving commands to
TOR network components for connections and disconnections
as well as exchanging other information.

Upon initializing the TOR application, it starts to look for the
first bridge (or first TOR node) that will link the user’s com-
puter to the TOR anonymous network; hence, the name bridge.
A bridge is just another TOR node that accepts connections that
are listed and maintained by five TOR management nodes and
are secured by the TOR team. The TOR application contacts
one of the five management nodes it requests a bridge for which
a specific handshake occurs to get connected to the TOR net-
work. Once connected successfully to the first bridge, the TOR
software talks to the five directory services. The concept behind

HARATY AND ZANTOUT: THE TOR DATA COMMUNICATION SYSTEM 417

Fig. 2. A user connecting through the Internet to a TOR network.

having TOR nodes is to allow each node to relay cells from and
to other TOR nodes, senders, and recipients without revealing
the cell’s content or the complete route to any of the nodes. This
is achieved through cell encapsulation and multi-level encryp-
tion whereby each cell is encrypted/decrypted at every node and
each node can only reveal a single encrypted layer in a cell. To
better explain this, consider the following example that illus-
trates complete communication between a client’s machine first
establishing contact with a TOR bridge and then communicat-
ing via TOR nodes/circuit for downloading a file.

In Fig. 2, step (1) illustrates that a user must be obviously con-
nected to the Internet in order to establish communication with
the TOR network. In (2) the user’s TOR software downloads
a list of available bridges that are available to start forming the
TOR circuit. Once a bridge has been reached (3), a special hand-
shake that is unique to TOR occurs and then client’s TOR soft-
ware contacts other available TOR nodes, after securely com-
municating with the five directory servers, and sends a request
to create circuit cell to all available nodes listed by the directory
servers.

In Fig. 3, after connecting to the bridge and then consulting
with the directory nodes to determine available TOR nodes, the
software randomly selects three other nodes to form a circuit
(or the user can do a selection also). The information is relayed
from the directory nodes to the client’s software in an encrypted
format so that the bridge does not know what nodes are partic-
ipating in the circuit. Hence, any TOR node only knows two
segments on the network: The node preceding it that it accepts
cells from, and the node it needs to forward cells to. It is also
important to notice the color of each segment shown in the dia-
gram as it has been colored for a purpose that will be explained
shortly, but an explanation of how a TOR circuit is built needs
to be shown first. When the TOR client determines the partici-
pating nodes it has chosen, it then needs to send a “create” cell
to each of the nodes without allowing any of the nodes of the
presence of each other. This is done through encryption and cell
encapsulation as follows:
1. TOR client establishes a secure encrypted link with the first

bridge (i.e., first TOR node) using encryption(1) with Cell(1).
The segment for which Cell(1) packets are passing through
are colored in red.

2. In order to establish a full TOR circuit composed of the
bridge and three other nodes, the client software establishes
another connection gradually, through the first bridge, to the

Fig. 3. A TOR Client connecting to a TOR Bridge.

second TOR node in the segment colored in blue. In fact, the
segment colored in blue is composed of Cell(2) using encryp-
tion(2).

3. After a successful initialization using Cell(2) with the sec-
ond TOR node, initialization with TOR node number three
is established through the bridge then the second TOR node
in order to ensure that communication with all nodes is not
advertised to the public. Moreover, notice that the bridge is
only aware of the existence of the client and the next TOR
node it needs to speak with. However, it is not aware of the
third and fourth TOR nodes. One might question the network-
ing logic behind this. To make things clear, consider that all
TOR nodes participating in a circuit are actually packet for-
warders (except for the last TOR node), whereby these nodes
are not aware nor do they care about the destination or short-
est path to the destination the client requires. TOR nodes just
relay packets from preceding nodes to destination nodes they
have been instructed to relay to.

4. The circuit is kept on being built incrementally until the last
and fourth node has been reached whereby the latter is called
the exit node. The exit node is the only node capable of de-
crypting the content of the encrypted data or request sent by
the client sent through the TOR network. The reason behind
this is because the exit node is responsible for communicat-
ing with the outside world; and hence, requires the exact data
and destination information. Once the exit node carries out
the request of the client and needs to return an answer, then
the exit node sends the information in an encrypted cell for-
mat that only the client is able to decrypt. Additionally, all
the cells along the way back are not aware of the contents of
the cell which the exit node has sent back to the client.

5. Throughout the above points, the data being sent to nodes has
been referred to as encryption(x) and cell(x) sent to node(x).
TOR utilizes private and public keys where any entity in the
TOR network has both. Of course, when information needs
to be sent to an entity one usually encrypts data with the pub-
lic key of the second party so that the second party is the only
entity capable of decrypting the data. TOR works exactly the
same way the colors presented in the last diagram are now
going to be explained. When the client needs to establish a
secure link with the bridge, it sends a cell(1) to node(1) –
the first node - using public/private key encryption method-

418 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

Fig. 4. Client sending and receiving cells to TOR bridge node.

Fig. 5. First stages of encapsulated cells between nodes in TOR.

ology. Hence, any cell sent between the client and the first
TOR node is encrypted. During the process of establishing a
TOR circuit, create cells sent to the participating TOR nodes
are also encrypted and relayed through already establish TOR
nodes as in Fig. 4.
Communication is then established with the bridge, now the

client needs to establish a connection with the second TOR node
through the newly established connection with the bridge. The
client acquires the public key of the second TOR node and then
designs a cell in the shape of an onion. The inner part of the cell
contains information encrypted with the public key of node 2
and the outer layer is encrypted with the public key of the bridge.
Once the bridge receives this cell it will peal (decrypt) the outer
layer and then will pass the remainder of the still encrypted cell
to TOR node number 2 as illustrated in Fig. 5.

A circuit composed of four nodes hence has four different
types of cells which are encapsulated in each other and only a
single node understands one layer of this encapsulation (i.e., can
decrypt and understand the content of the cell). When a circuit
is formed it is the duty of the TOR client software to design the
encapsulated cells hence called onions before sending them to
the circuit. All data pertaining to the identity of the client are
stripped from the cells and therefore the client becomes anony-
mous whereby the bridge is the only entity that knows of the
client’s existence (not even the exit node). Similarly, it is also
the duty of the exit node to encapsulate and design an onion cell
that can be reversely decrypted on the way back as an answer to
the client’s request(s). Data in an onion or encapsulated cell is
illustrated in Fig. 6.

The network path for the onion in Fig. 5 that is passing
through the TOR circuit via the TOR nodes is now represented
in Fig. 7.

When the network packets originating from the client are sent
through the fourth node they are no longer encrypted, as the
fourth node has removed the last layer of encryption from the
onion. The receiving entity will now be contacted by the fourth

Fig. 6. A sample of multiple encapsulated cells in a TOR network.

Fig. 7. A representation of the path of an encapsulated cell in a TOR
tunnel.

node, hence hiding the identity of the client, and the data sent
back to the client will traverse backwards along the same path
data has come from. When data reaches its final destination,
only the client is able to decrypt and view the data. Hence, in
any TOR communication, only the bridge knows of the exis-
tence of the client in a circuit and only the exit node is able to
reveal the data but not the identity of the client.

C. TOR Features

TOR has many features that make it attractive. For a detailed
list, users are referred to [12]. These features include:
• Ease of use through socks proxy
TOR has been built in a way that allows users of different back-
grounds to use TOR easily and anonymously. TOR also relies
on applications with socks proxy features in order to redirect
any application’s traffic through a single tunnel to the anony-
mous TOR network. This allows all applications to benefit from
encryption standards TOR is using. Moreover, all desktop ap-
plications are unaware of the stages of TOR and how data is
encrypted/decrypted or even how cells are formed. Once a user
sets his/her application to the TOR socks proxy settings, then
the TOR engine is installed.
• Protection against strong and weak attacks
The designers of TOR admit that the anonymous network does
not prevent against global adversaries that have exclusive net-
work/resource access and are capable of monitoring traffic on all
networks their users are connected to. However, TOR promises
protection against strong and weak attacks from individuals
and other entities with malicious attack techniques carried out
on non-technical and sometimes unprotected end users. Con-

HARATY AND ZANTOUT: THE TOR DATA COMMUNICATION SYSTEM 419

sequently, preventing against traffic analysis and assuring the
integrity and confidentiality of data being transmitted over the
Internet for and by users and therefore hiding the identity of re-
cipients and senders is at the moment the concern of the TOR
project. Many types of attacks have been carried out on TOR
since it was introduced like basic traffic analysis, path confirma-
tion attack, insertion attack, predecessor attack, and backtrack
attack [11].

D. Critique

TOR is a unique anonymous design has that the following
advantages:
• No single TOR node is aware of the complete plan of com-
munication
When a circuit is formed TOR nodes participating in that circuit
are only aware of the predecessor for which they have received
traffic from, and the next node they need to relay traffic to (ex-
cept for the last node that is able to identify the content of the
cell, but not the identity of the sender). Hence, even if a single
node is compromised or is acting maliciously by gathering data
about traffic being relayed and analyzing such traffic, then that
TOR node can only know little in order not to compromise the
content of such traffic as well as identify the sender and receiver.
• The more the number of TOR nodes the more anonymity
added
Similar to any graph model, the more the number of vertices
the more the number of edges needed to create different inter-
connections. Hence, the more the number of TOR server nodes
participating in a TOR network, and the more the number of
TOR users relaying TOR traffic (through TOR clients), then the
more the possible number of circuits that can be established and
can therefore pass information securely along TOR paths.
• TOR builds anonymous paths for the client based on a list
of bridge nodes
When a client is requesting to establish a circuit, then an en-
crypted list of all available bridges is downloaded from one of
the five management nodes and then decrypted at the client level
in order to establish the first hop onto the TOR circuit. Once the
first hop is established with the bridge, the next TOR nodes are
contacted gradually hence adding even more security to estab-
lishing circuits as opposed to contacting circuits individually.

On the other hand, TOR has several disadvantages. These are:
• QoS considerations for dynamically assigning certain traf-
fic to certain categories due to packet encryption
Many users choose to abuse the TOR network unintentionally
by either having large downloads being streamed to their work-
stations using P2P applications, or by simply downloading large
files over HTTP. Once some users choose to use low latency ap-
plications like Telnet, SSH, and VoIP user experience becomes
horribly unbearable due to latency and link congestions. Net-
Camo had solved this problem by introducing a QoS require-
ment for every connection that needs to traverse the anony-
mous system. However, connections that require a certain QoS
requirement that cannot be met at the time of the request are
dropped and therefore cannot be served. Since NetCamo is lim-
ited to a certain number of predefined nodes where circuits are
established only once and do not frequently change, then drop-
ping incoming connections with high QoS requirements is the

only way possible to assure other connections have a reliable
bandwidth to deliver their data stream [13]. Since TOR can eas-
ily shift and change network paths by reestablishing new cir-
cuits, then QoS requirements can be met based on the connec-
tion protocol.
• Directory information servers can be blocked
The directory information servers keep track of all participating
TOR nodes, as well as, the bridges users are allowed to connect
to. Moreover, the lists of participating TOR nodes that have been
found reliable and participating frequently are usually posted on
the TOR website. Hence, if any authority wishing to stop the
usage of TOR by its users, then the lists of all available TOR
servers as well as the directory servers are readily available to
be simply blocked by the firewall of that organization.
• Central servers for TOR discovery that lists TOR servers
and guarantees connectivity for TOR servers
As there are centralized directory servers for managing the
TOR network and communication, this seems an advantage;
however, it is not. Although TOR designers admit that TOR
nodes/servers/client are all susceptible to attackers who are cat-
egorized as global adversaries, a single attacker with access to
an organization’s Internet gateway is able to cause a serious
threat to individuals using TOR inside the organization’s net-
work. An attacker can simply fake the identity of the TOR direc-
tory servers by redirecting traffic to a local server and then gen-
erating a set of public and private keys, and then the attacker can
maliciously modify a TOR client and then repackage it for users
to download. The modified TOR client can simulate connections
to other nodes, as in fact it’s only connected to the newly intro-
duced server that’s faking and feeding false information to the
user’s TOR client. As a result all traffic being generated from
and to the Internet is now in the clear. Of course users with a suf-
ficient technical background may detect such types of malicious
attacks; however, to the normal end user, this is undetectable
[14].
• All TOR traffic is pushed through port 9001 TCP can not
only be blocked but also detected
The ability to use TOR relies on socks proxy features found in
applications, and while there are many applications that already
have this feature implemented; many other applications/services
do not. An example is a DNS request that requires the client to
resolve against any DNS server outside the TOR network. In
this scenario consider a user requesting to visit a website like
google.com, once the user enters the domain in his/her browser,
a DNS request will be sent to the user’s ISP to perform a domain
name lookup and resolve that domain name to an IP. This exact
process is not anonymous and insecure and hence allows any
snooper to perform time-attacks and learn that the user is, at this
point in time, generating traffic and accessing google.com. To
some applications that rely on DNS and do not support socks
proxy makes TOR useless in some scenarios or where end-to-
end attacks are possible. Therefore, TOR cannot prevent against
end-to-end attacks [15].
• Open design, Open Source Code
The fact that TOR is an open source implementation makes TOR
a widely acceptable anonymous piece of software. It presents
true security to users by revealing code internals. Due to this fact
also some professional attackers are capable of taking advantage

420 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 4, AUGUST 2014

of this by introducing malicious code into some clients and then
performing attacks on the TOR network. Of course this does not
mean that TOR must be a closed source to add more protec-
tion to the TOR network and users, security through obscurity is
not intended here; however, a thought needs to be given to this
model.
• Slow Performance
Due to most users being end users with asymmetric connec-
tions like DSL/ADSL with limited traffic, makes users prefer
choosing high bandwidth dedicated TOR nodes instead of users
who have chosen to become TOR relayers with poorer band-
width connections. This in turn not only lessens anonymity but
also adds more load on TOR dedicated nodes, as well as, secu-
rity risks and reliability. An attacker may simply deploy a large
number of dedicated TOR servers; thus, users would willingly
join these servers and risk traffic analysis being carried out on
their connections.
• Success or failure in data integrity checks
This may render a circuit useless an attacker with enough skill
can cause serious degradation in TOR’s communication experi-
ence through two scenarios for which one was proven successful
by Keven Bauer [16].
• Website fingerprinting and backtrack attack
This is due to lack of packet camouflaging, delay, and reordering
[17], [18].

IV. CONCLUSION

This paper presented the TOR anonymous system and its cor-
responding details that have made such a system a success.
Avoiding traffic analysis, and hiding the identities of users, is
the aim of any anonymous system. However, since most anony-
mous systems rely on aging encryption technologies for which
global adversaries are a capable of compromising, then the in-
tegrity of data might be at stake.

One of the key elements that worry anonymous systems re-
searchers is QoS for the bandwidth utilized by peers on the
systems and the overall network performance. Although this
has been slightly commented on, more research in QoS and
a bandwidth-choking approach is required while concentrat-
ing on security and functionality implications. Future work in-
volves conducting a detailed study and comparison of the vari-
ous anonymous systems.

REFERENCES
[1] S. Syverson, D. Goldschlog, and M. Reeds, “Anonymous connections and

onion routing,” in Proc. IEEE SP, Oakland, USA, 1997, pp. 482–494.
[2] (2014, June 20) TOR - Onion routing online documentation [Online].

Available: https://www.torproject.org/
[3] B. Choi, D. Xuan, C. Li, R. Bettati, and W. Zhao, “Efficient traffic cam-

ouflaging in mission-critical QoS guaranteed networks,” in Proc. IEEE In-
formation Assurance and Security Workshop, West Point, Virginia, USA,
2000, pp. 143–149.

[4] R. Dingeldine, “TOR: the second-generation onion router,” in Proc.
Usenix Security Symposium, San Diego, USA, 2004.

[5] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” ACM Commun., 24(2), pp. 84–88, 1981.

[6] (2014, Apr. 30) How anonymizers work [Online]. Available: http://
www.livinginternet.com/i/is anon work.htm

[7] (2014, Apr. 30) JAP anonymity and privacy [Online]. Available:
http://jap.inf.tu-dresden.de/index en.html

[8] G. Danezis, R. Dingeldine, and N. Mathewson, “Mixminion: design of
a type III anonymous remailer protocol,” in Proc. IEEE Symposium on
Security and Privacy, Berkeley, USA, 2003, pp. 2–13.

[9] M. Freedman, S. Sit, J. Cates and R. Morris, “Introducing Tarzan, a peer-
to-peer anonymizing network layer,” in Proc. First Int. Workshop on Peer-
to-Peer Syst., Cambridge, 2002.

[10] M. Rennhard and B. Plattner, “Introducing MorphMix: peer-to-peer based
anonymous internet usage with collusion detection,” in Proc. ACM Work-
shop on Privacy in the Electronic Society, Washington, USA, 2002, pp.
91–102.

[11] P. Syvneron, G. Tsudik, M. Reed, and C. Landwehr, “Towards Analysis of
Onion Routing Security,” in Designing Privacy Enhancing Technologies:
Workshop on Design Issue in Anonymity and Unobservability, Springer-
Verlag, LNCS, 2009, pp. 96–114.

[12] B. Zantout and Ramzi A. Haraty. Avoiding Traffic Analysis and Assuring
Data Integrity using a Quorum-based Approach. The Fifth International
Workshop on Advanced Computations for Engineering Applications. Taif,
Saudi Arabia. Mar. 2010.

[13] B. Zantout and R. Haraty, “A comparative study of Bittorrent and Net-
Camo data communication systems,” International Journal of Computa-
tional Intelligence and Information Security, volume 1, number 2, March
2010.

[14] S. Chakravarty, “Traffic Analysis Attacks and Defenses in Low Latency
Anonymous Communication,” Ph.D. dissertation, Columbia Univ. 2014.

[15] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of TOR,” in Proc.
IEEE Security and Privacy Symp., May 2006.

[16] K. Bauer, D. McCoy, D. Grunwald, S. Douglas, and K. Tadayoshi, “Low
resource, routing attacks against anonymous systems,” Tech. Rep. CU-CS-
1025-07, University of Colorado, USA, 2007.

[17] A. Hints, “Fingerprinting websites using traffic analysis,” in Privacy En-
hancing Technologies. Springer-Verlag, LNCS 2482, 2002, pp. 171–178.

[18] B. Zantout and R. Haraty, “I2P data communication system,” in Proc. 10th
Int. Conf. Netw., 2011, pp. 401–409.

Ramzi A. Haraty is an Associate Professor of Com-
puter Science in the Department of Computer Science
and Mathematics at the Lebanese American Univer-
sity in Beirut, Lebanon. He serves as the Program
Administrator for the Middle East Program Initiatives
(MEPI) Leaders for Democracy Fellowship program.
He is also the Internship Coordinator for MEPIs To-
morrows Leader program. He received his B.S. and
M.S. degrees in Computer Science from Minnesota
State University - Mankato, Minnesota, and his Ph.D.
degree in Computer Science from North Dakota State

University - Fargo, North Dakota. His research interests include database man-
agement systems, artificial intelligence, and multilevel secure systems engineer-
ing. He has well over 110 books, book chapters, journal and conference pa-
per publications. He supervised over 110 dissertations, theses, and capstone
projects. He is a Member of the Association of Computing Machinery, Insti-
tute of Electronics, Information and Communication Engineers, and the Inter-
national Society for Computers and Their Applications.

Bassam Zantout is a Mid-Tier SSE - Virtualization
and Storage at EMC in Riyadh, Saudi Arabia. He fou-
cuses on designing and administrating private cloud
infrastructures, featuring multi-platform high avail-
ability environments, and encompassing a variety of
vendor products. He received his B.S. and M.S. de-
grees in Computer Science from the Lebanese Ameri-
can University in Beirut, Lebanon. His research inter-
ests include cloud computing and infrastructure secu-
rity.

