
A Comparative Study of Mobile Database 

Transaction Models 
Ramzi A. Haraty 

Department of Computer Science and Mathematics 

Lebanese American University 

Beirut, Lebanon 

Email: rharaty@lau.edu.lb 
 
Abstract--As communication becomes more and more an integral 

part of our daily lives, so does our need to access more and more 

information. Mobility is currently one of the most important 

factors to consider in our aim to achieve ubiquitous computing, 

and with it rises the problem of how to manipulate data while 

maintaining consistency and integrity. This paper presents a 

comparative analysis of mobile database transaction models. 

 
keywords—mobility; database transaction models; and ACID 

properties.  

 

I. INTRODUCTION 

 

   Pervasive computing is a term loosely used to describe the 

current state of computer technology in modern life [1]. Our 

reliance on computing mediums increases with the need for 

mobility, connectivity and data availability. We often find that 

the data we need located on multiple devices and in various 

locations, is inaccessible directly most of the time. Pervasive 

computing also encompasses the concepts of data, 

connectivity and their ubiquitous presence in an individual's 

daily life. As an example, in a single day, the average 

individual can go through a minimum of three different 

devices to perform various everyday tasks such as checking 

his/her email account on the desktop computer, calling a 

family member on the cellphone, listening to some music in 

the background on his/her personal laptop and syncing all 

appointments from his/her palm-pilot to his/her email client. 

Current tools, such as Google's plethora of desktop search 

tools, have reduced the divide by centralizing data 

management, but they do not address issues such as unrelated 

data repositories, data safeguard and integrity. In addition, the 

problem of intermittent connectivity through wireless enabled 

devices is also a major issue in mobility. As such, maintaining 

data integrity and consistency in such mobile environments is 

a challenge - given the diverse factors that influence 

connectivity, from geography to battery life. Current trends in 

mobile databases suggest the adoption, among other 

techniques, of the quorum approach in which multiple mobile 

hosts perform reads and writes based on the majority vote of 

hosts selected to the quorum [2].  Although the quorum 

algorithm has been extensively studied since its earlier days, 

adapting it to mobile devices with connectivity issues and 

providing a solid quality of service (QoS) for quorum 

members is still in its infancy. The adaptation of quorum 

consensus to mobile environments to insure a high level of 

service is one of the main challenges to tackle. 

 

   This paper presents a comparative analysis of mobile 

database transaction models. The rest of the paper is organized 

as follows. Section 2 presents the mobile database systems 

architecture. Section 3 presents the comparative analysis of the 

mobile transaction models; and section 4 concludes the paper. 

II. THE MOBILE ENVIRONMENT 

A. Mobile Database System  

   Mobile database systems can essentially be summarized as 

large distributed database systems, with the added property of 

catering for mobile units that may experience connectivity 

outages depending on their geographical location or data 

processing capabilities. The acronym MDS (Mobile Database 

System) is used to refer to them. An MDS comprises of 

interconnected computers and communication systems, both 

wired and wireless (typically GSM or 802.11), which allow 

users to connect to the systems that host the requested data. 

Typically, an MDS comprises of Fixed Host (FH) units, 

interconnected through a high speed wired network, Base 

Stations (BS) and Mobile Units (MU) or Mobile Hosts (MH), 

which typically describe a portable computing device ranging 

from a laptop to a PDA. Figure 1 depicts the various 

components of an MDS and the interconnectivity among its 

various components. The mobile unit refers to any hand held 

device that can be carried by its owner and is able to 

communicate with other computing devices. These mobile 

units are typically considered outlying components of the 

system and are inter-networked through the wireless network 

infrastructure. This wireless infrastructure can be a typical 

802.11 wireless network, a GSM network or a hybrid of both, 

and comprises of a BS with which the MU communicates 

directly. The BS, in turn, communicates with a Base Station 

Controller (BSC), which work in tandem to control and 

coordinate traffic among the various BS in a given 

geographical region. Communications from the MU are then 

routed either through a standard wired network infrastructure 

or directly to the database server, which handles fetching 

requested information and sending information back to the 

MU that originated the request.  

 
   It is also worth noting that an MDS would comprise multiple 

DBSs and various DB configurations, which could be in 

various geographical regions and contain either replicated data 

or spatial data pertinent to the geographical location where 

that DBS is located. The architecture is also dynamic enough 



to allow semantically related data to be clustered together. The 

above three DBS types (replicated, spatial, semantic) may also 

coexist together and provide a hybrid MDS incorporating all 

of these features. The choice for such configurations is usually 

related to data availability and redundancy considerations. In 

the case of geographically related data, this distribution could 

also serve to provide users with data relevant to their current 

geographical location as well [3]. As such we can define two 

broad categories of replication: spatial replication for location 

dependent data or temporal replication for traditional 

databases. The main difference being that temporal replication 

provides a single, unique, consistent value for any accessed 

data, from any replication site, whereas spatial replication 

(although provides the same DB structure on all sites) 

provides a single unique value of requested data, depending on 

the geographical location where that request has been made. 

Thus, in spatial replication, data in various geographical 

locations may have different values that are unique to a 

particular geographical context. Note that temporal replicas of 

spatial data, in a particular geographical location, are also 

possible. 

 
Figure 1.A mobile data system. 

B.  Transaction Execution in MDS 

   Transactions are the basic atomic units that carry requests 

and data between the DBS and the client (MU or FH). In an 

MDS, the distributed nature of data and the nature of requests 

made by clients, involves a lot of parallel processing, both to 

improve system performance as well as provide the necessary 

data. Transactions are no longer treated as atomic units in 

distributed databases, but are themselves amenable to being 

divided into sub-transactions, that are spread and sent to the 

DBS containing the requested data. The entity responsible for 

breaking down a transaction into subcomponents is called the 

coordinator. A coordinator is usually a system that is aware of 

the network within its coverage zone; spatial location of 

requested data and geographical location of associated DBSs, 

making it a crucial component in request dissemination (see 

Figure 2). A coordinator is a system that should satisfy the 

following two properties: 

 Continuous Connectivity: A coordinator should (in 

theory) maintain connections with the rest of the system 

with no downtime or intermittent failures. 

 Continuous Availability: It should also be accessible at 

any time with no downtime and provide comparatively 

large storage capabilities for cached data. 

 

   According to [4] the most suitable entity in Figure 2 

satisfying the above requirements, would be the BS acting as 

the coordinator, as its features include, in addition to the points 

mentioned above, direct communication with MUs in its 

coverage zone. Communication between the MU and the DBS 

typically involves transaction exchanges that can be initiated 

by the DBS, the MU or both. The processing of these 

transactions can also take place exclusively at the MU where it 

was instantiated, exclusively at the DBS, or at both locations 

simultaneously.  

 

   Given that mobile units may move from one coverage area 

to another, changing the BS/Coordinator to which it is 

attached, a transaction may complete in one of the following 

scenarios [5]: 

 Static MU: the MU establishes a connection with a given 

BS, which is designated as its coordinator. If the MU does 

not move, then the transactions initiated by the MU will 

complete through the same coordinator it was initiated 

from. 

 Dynamic MU: In this scheme the designated coordinator 

of an MU can change depending on the location of the 

MU and the coverage area of the BS.  

 
Figure 2. Transaction execution in an MDS. 

 

III. MOBILE TRANSCTION MODELS 

   This section covers the most recent mobile transaction 

management and execution models by giving an informative 

overview of their features and mode of operation, as well as 

comparing their high-points and low-points. All discussed 

models adhere (to varying extent) to, or extend, the ACID 

transaction execution model [6]. This model has been the 

generic underlying of all transaction execution models because 

of its proven reliability, insofar as the properties it provides 



guarantee that transactions are processed in a reliable fashion 

[7]. A brief explanation of ACID properties follows: 

 Atomicity: This property guarantees that any executing 

transaction is treated as an entity that may not be 

fragmented into any smaller components.  

 Consistency: Ensures that all integrity constraints 

(regardless of granularity) are maintained to provide an 

accurate and timely view of data.  

 Isolation: This property ensures that no data may be 

viewed in an intermediate state by one transaction while 

another transaction is operating on that data. The formal 

adjective describing this state is referred to as a 

serializable state [8]. 

 Durability: Refers to the persistence of the operations of a 

transaction after successful execution, so that any 

modifications carried out by that transaction on a data 

item will not be rolled back. 

 

   Mobility introduces new challenges to the way data is 

handled and presented, because of its spatial quality; the same 

data in two different geographical locations will have different 

values. Therefore, maintaining consistency also becomes more 

complex as the spatial component gets factored in. Most MDS 

transaction execution models introduce the concept of spatial 

consistency [9]. The idea consists of providing an MU 

consistent data, based on its current location, in a way that the 

owner of the MU can use. As an example, assume user 

requests information about a particular restaurant which is a 

mile from his current location. If the returned answer was 

given back after that user has passed the restaurant, then that 

request is no longer relevant; the user having left the 

geographical area where this information would have been 

useful. The reason for getting a belated response could be due 

to factors such as bandwidth limitation, MU disconnections, or 

query processing time. 

 

   The following are the current mobile transaction models, 

each which will be described in detail with accompanying 

figures, where applicable. 

A. Clustering 

   The clustering model, depicted in figure 3, was introduced 

by Pitoura et al. in [10] and extended in [11]. It assumes a 

fully distributed system where data is clustered based on a set 

of dynamic semantic proximity. These clusters are created and 

merged dynamically based on either global conditions, or on 

conditions set by mobile users, which would allow them to 

cluster frequently accessed data in a way that minimizes 

access time. Data in a specific cluster is required to be fully 

consistent, in so far as various versions of the same data 

cannot co-exist. Different clusters may exhibit what is referred 

to as bounded inconsistency wherein data items may have 

different values in different clusters based on a certain set of 

predefined metrics. The metrics include the number of 

different copies of the data in all clusters. Once this limit is 

reached, a reconciliation function takes care of minimizing the 

value of that metric back to a lower threshold. The model also 

defines two types of consistency, an inter-cluster consistency 

and an intra-cluster consistency.  Inter-cluster consistency is 

the equivalent of global consistency in traditional database 

models, with the difference that inter-cluster states may 

contain irregularities that fall within the values of the bounded 

inconsistency threshold. The cluster is referred to as being m-

degree consistent, where the degree refers to the divergence in 

the value of the chosen bounded inconsistency. Intra-cluster 

consistency, on the other hand, is equivalent to strict 

consistency in traditional database models, whereas no data in 

the specified cluster may have more than one value associated 

with it. To achieve this, the model introduces two types of 

transactions, weak transactions and strict transactions. Weak 

and strict operations are also introduced in terms or reads and 

writes. As a rule, strict transactions may apply to a single 

cluster or be inter-cluster operations leaving the database in a 

globally consistent state. On the other hand, weak transactions 

may only be executed within a particular cluster only and 

modifications by a write operation become permanent once 

the scheduled reconciliation function is run. In general, strict 

reads will only read values written by strict writes, and weak 

reads will read values written by a weak write. A strict 

transaction becomes a set of strict operations (reads and 

writes), whereas weak transactions refer to a set of weak reads 

and writes. Only weak transactions are allowed to be 

performed by the MH on its dataset. Table 1 summarizes 

properties and mechanism of the clustering model to maintain 

ACID properties. Two of the main drawbacks in this approach 

involve issues with the architecture itself. First, the fact that 

clustering maintains two different types of data makes 

replication a very complex operation. Compounded to that, the 

model does not fully adhere to the durability property of the 

ACID model, as locally committed transactions may be rolled 

back due to reconciliation conflicts, leading to a higher degree 

of cascaded aborts. 

 
Figure 3. The Clustering Model Architecture. 

B. Two-Tier Replication 

   The two-tier replication model [12], illustrated in figure 4, 

relies on a lazy replication mechanism geared towards mobile 

environments. The model introduces the concept of master 



copies to which fully replicated copies are associated. As with 

the clustering model, it also classifies transactions in two 

categories, base transactions, which operate on master copies 

of data, and tentative transactions, which operate on the 

replicated copies when a MH is disconnected. As long as the 

mobile host is connected, it participates in all operations using 

base transactions to modify stored master copies of the data 

and propagate these changes through a lazy replication scheme 

that guarantees one-copy serializability. When an MH is 

disconnected, it no longer has access to stored master data and 

may only operate on tentative copies of the data instead, using 

tentative transactions. Once the connection is re-established, 

the MH re-executes tentative transactions as base transactions 

to update its master copy and propagate the data changes. The 

acceptance of the re-executed operation for final commit is 

dependent on the predefined acceptance criteria. In case of 

conflicts, the initiating tentative transaction is aborted. This 

model allows for semantic divergence between tentative and 

base data, and reconciliation is done by the re-execution of 

tentative transactions as base transactions. The adherence of 

this model to the ACID properties can be found in Table 2. 

 

C. HiCoMo 

 

   Introduced by [13], HiCoMo is yet another novel approach 

to managing transactions in highly mobile environments (see 

figure 5). Like the two preceding models, it distinguishes 

between two types of transactions, base and HiCoMo 

transactions. The difference being that HiCoMo mobile hosts 

do not operate on base data but on aggregate data (summation, 

counts, minimum, etc...) which are obtained from base tables. 

HiCoMo transactions are executed when the MH is operating 

in disconnected mode. Upon reconnection any modifications 

performed on the aggregate tables is then re-synced with the 

base tables using commutative inference and semantics 

functions, which allow HiCoMo transactions to be 

transformed into base transactions. A divergence threshold is 

also tolerated between base and HiCoMo transactions. 

 
Figure 4. The Two-tier Replication Model Architecture 

 

   The ACID properties are maintained through the following 

features: Atomicity is guaranteed in the use of an extended 

nested transaction model in which base transactions are treated 

as sub-transactions and organized in a tree like structure with 

parent-child dependencies. What is most striking about this 

approach is its flexible commit model that allows base 

transactions (and HiCoMo transactions) to be re-executed 

within a preset error margin (divergence criteria). Once that 

error margin is exceeded the transaction is aborted. The 

triggering of the error margin retry, due to a conflict between 

base transactions, results from the transformation of the 

HiCoMo transactions into the original base table data (i.e., a 

constraint on the maximum value of a data field). The re-

execution of transactions is allowed in this model due to the 

commutative nature of the original aggregate data made 

available to the MH. This commutative feature also provides 

the model with a high level consistency. In terms of isolation, 

intermediate values of data are only made visible to local 

transactions on the MH, whereas concurrency is maintained 

using an optimistic concurrency control strategy that uses 

timestamps to order operations and avoid conflict between 

base and HiCoMo transactions. In terms of replication, 

correctness is maintained through a convergence scheme that 

guarantees that data between HiCoMo and base tables always 

remains within the specific error margin. This condition is 

guaranteed by the data commitment process. One of the main 

drawbacks of the HiCoMo model is inherent in its design. The 

use of aggregate data, although improving local transaction 

commit times, also makes the conversion process (from 

HiCoMo to base transactions) rather complex, and limits the 

possibilities of data manipulation to commutative operations 

only. Table.3 summarizes the ACID properties of the HiCoMo 

model. 

 
Figure 5. The HiCoMo Replication Model Architecture 

 

D. Pro-Motion 

   One of the most innovative approaches to mobile databases 

was introduced by Walborn and Chrysanthis in [14] and is 

mainly a data caching scheme that allows for consistent local 

transaction processing. The main innovation of this scheme is 

the introduction of the concept of compacts. Compacts, as the 



name suggests, are an agglomeration of data, operations and 

constraints, which form the basic caching and control 

mechanisms among MHs and FHs, and considers all 

operations executed on mobile systems as a very long 

transaction executed on the server. In other words, all 

operations are executed on the MH and are synchronized later 

with the server. A compact manager takes care of the 

generation and management of compacts on the server, 

whereas a compact agent takes care of caching and processing 

transactions on the MH. Interaction between various MHs and 

FHs are done through the mobility manager in charge of data 

exchange between various compact agents. The model extends 

the standard transaction execution model with some 

specialized methods pertaining directly to the manipulation 

and querying of compacts to support data manipulation and 

concurrency schemes. As such, compacts can be inquired 

about using the “Inquire” method and notified of any changes 

in the state of the MH using the “Notify” method. Commit and 

abort operations are also used to validate or invalidate data 

changes performed by compact transactions. A special 

“Dispatch” method is used to process operations initiated by 

the compact agent, which are to be locally committed. The 

interaction between the compact agent and the manager is 

confined to four types of transaction processing activities, 

which involves the agent and/or manager. When the MH is 

connected to the network, it always attempts to store compacts 

for an eventual disconnection. This constant storage of 

compacts is referred to in the model as hoarding. Compacts 

are stored in a compact registry. While connected and 

performing its hoarding function, the MH will continually 

process transaction with the compact manager. Although the 

model does not differentiate between connected and 

disconnected modes, when interacting directly with the 

compact manager, the MH will be operating at a more 

optimized level than in disconnected mode due to the quick 

turnaround of operations. This is referred to as connected 

execution. When disconnected, the MH will revert to local 

processing of transactions and maintains a log of operations 

that can be replayed later for either recovery or 

resynchronization. An overview of the PRO-MOTION 

architecture is depicted in the Figure 6. 

 
Figure 6. The PRO-MOTION Replication Model Architecture. 

   

   After the MH re-establishes a connection with the network, a 

synchronization process takes place to reconcile the locally 

committed transactions with the permanent data store on an 

FH. If no conflicts are detected, all updates are performed. In 

the eventuality of a conflict or data expiry, the following 

venues may be undertaken by the system: In case of data 

expiry, the compact agent will attempt to get a renewal on the 

data item from the compact manager, pending no other 

transaction (from another MH) has modified that data after the 

expiry date. In case both of these operations fail, compacts 

that have failed to reinstate their changes with the compact 

manager and incorporate their changes with the permanent 

data store, are aborted, and all associated compacts are 

invalidated. Once a list of valid compacts is generated, these 

are allowed to issue a dispatch event to the server, replaying 

the operations that have been locally committed on the 

database server for final commitment. As far as the model's 

adherence to ACID properties, Table 4 summarizes the various 

mechanisms and schemes used by PRO-MOTION. 

 

IV. CONLCUSION 

 

   This paper presented an overview of the various database 

transaction models currently available for mobile computing 

environments. The paper gave an informative overview of the 

models, their features, and their mode of operation. One of the 

main points to focus on in future studies, would include 

studying the impact of building historical track record of 

mobile hosts based on elaborate regression models (such as a 

Bayesian regression model [15]). Future work will also entail 

classifying models based on metrics such as the one in [16] to 

further refine the classifications of the hosts. This would 

require that real performance data be made available to the 

system in order to allow the Bayes engine's learning process to 

evaluate its current state, based on measurements that reflect 

the reality of the system. 

References 
 
[1] M. Satyanarayanan, Pervasive Computing: Vision and Challenges, IEEE 

Personal Communications, vol. 6, no. 8, pp. 10–17, August 2001. 
[2] S. Younes and R. A. Haraty, An Enhanced Quorum Selection Algorithm, 

Journal of Computers, vol. 4, no. 7, pp. 654-662, July 2009. 

[3] R. A. Haraty and Roula C. Fany, Query Acceleration in Distributed 
Database Systems. Revista Colombiana de Computación, Volume 2, 

Issue 1, pp. 19-34, 2001.  

[4] V. Kumar, Mobile Database Systems. J. Wiley & Sons Inc., 2006. 

[5] P. Krishna, N. Viadya, and D. Pradhan. Static and Dynamic Location 
Management in Distributed Mobile Environments. Technical Report, 

Department of Computer Science, Texas A&M University, June 1994. 

[6] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. 
Morgan Kaufmann Publishing, San Mateo, CA, USA, 1992. 

[7] Serrano-Alvarado, P., et al., (2004). A Survey of Mobile Transactions. 

Journal of Distributed and Parallel Databases. 16, pp. 193-230, 2004. 
[8] R. Elmasri and S. Navathe. Database Systems: Models, Languages, 

Design, and Application Programming. Pearson, 2011. 

[9] S. Servigne, T. Ubeda, A. Puricelli, and R. Laurin. A Methodology for 
Spatial Consistency Improvement of Geographic Databases. 

GeoInformatica 4:1, pp. 7-34, 2000. 

[10] E. Pitoura and B. Bhargava. Maintaining Consistency of Data in Mobile 
Distributed Environments. Proceedings of the 15th International 

Conference on Distributed Computing Systems, pp. 404-413, 



Vancouver, Canada, 1995. 

[11] E. Pitoura and B. Bhargava. Data Consistency in Intermittently 

Connected Distributed Systems. IEEE Transactions on Knowledge and 

Data Engineering (TKDE), vol. 11, no. 6, 1999. 

[12] D. Golovin, A. Gupta, B. M. Maggs, F. Oprea and M. K. Reiter. Quorum 
Placement in Networks: Minimizing Network Congestion. Proceedings 

of the Twenty-fourth Annual ACM Symposium on Principles of 

Distributed Computing, Denver, Colorado, USA, pp. 16–25, 2005. 
[13] M. Lee and S. Helal. HiCoMo: High Commit Mobile Transactions. 

Kluwer Academic Publishers Distributed and Parallel Databases, vol. 11, 

no. 1, 2002. 

[14] G. D. Walborn and P. K. Chrysanthis. Transaction Processing in PRO-

MOTION.  Proceedings of the ACM Symposium on Applied 

Computing, San Jose, USA, pp. 389-398, 1999. 

[15] C. M. Bishop and E. M. Tipping. Bayesian Regression and Classification. 

Advances in Learning Theory: Methods, Models and Applications, 
J.A.K. Suykens et al. (Editors), IOS Press, NATO Science Series III: 

Computer and Systems Sciences, volume 190, 2003. 

[16] S. Abiad, R. A. Haraty and N. Mansour. Software Metrics for Small 
Database Applications. Proceedings of the 15th ACM Symposium on 

Applied Computing. Como, Italy, pp. 886-870, March 2000. 

 

Table 1. Clustering Model ACID Properties 

Model Atomicity Consistency Isolation Durability 

Clustering MH Disconnected: weak 

operations are performed 
and locally committed. 

 

MH Connected: strict 

operations are performed 

using 2 Phase Commit 

(2PC) 
 

DB Server: reconciliation 

function commits or rolls 
back transactions in case of 

conflict 

Intra-cluster consistency: For the two types of 

data values either weak or strict, a single value 
for each may exist for each no data my value 

may have multiple values for a specific type. 

 

Inter-cluster consistency: Is maintained by 

insuring that divergence doesn't exceed the 

specified degree of inconsistency. 

Uses Strict 2PL for concurrency control 

and introduces 4 lock tables one for each 
operation type (WR, WW, SR, and SW). 

 

Intermediate values are not visible to 

transactions, but locally committed 

values are visible to local transactions on 

a specific MH. 
  

Strict versions of data are replicated 

using a quorum consensus protocol, 
whereas weak versions are propagating 

according to the degree of inconsistency. 

No guarantees on 

durability. Dependent on 
the degree of inconsistency 

in the cluster. 

 

Table 2. Two-Tier Replication Model ACID Properties 

Model Atomicity Consistency Isolation Durability 

Two-tier 
Replication 

MH Disconnected: tentative 
operations are performed and 

locally committed. 

 
MH Connected: Base operations are 

performed using an atomic commit 

protocol 
 

DB Server: reconciliation is 

performed by re-executing tentative 
transactions as base transactions. 

Is maintained through 
acceptance criteria and 

commutative tentative 

transactions. 

Uses a 2PL variant for concurrency control. 
 

Intermediate values are not visible to 

transactions. Locally committed values are 
visible to local transactions on a specific 

MH. 

  
Base versions of data are replicated through 

a lazy replication scheme. Tentative 

versions remain local to the MH that 
generated them. 

No guarantees on durability. 
Dependent on acceptance 

criteria during re-execution. 

 

Table 3. HiCoMo Model ACID Properties 

Model Atomicity Consistency Isolation Durability 

HiCoMo MH: HiCoMo transactions are locally 

committed and manipulate only aggregate data. 
 

DB Server: reconciliation is performed by re-

executing HiCoMo transactions as base 
transactions, taking into account the predefined 

error margin. Transformed HiCoMo 

transactions are aborted if, during re-execution, 

the error margin is not exceeded. 

Is maintained through the 

generation of aggregate 
tables, commutative 

transactions, and 

predefined error margins. 

Uses an optimistic timestamp 

ordering concurrency control. 
 

Intermediate values are not 

visible to transactions. But 
locally committed values are 

visible to local HiCoMo 

transactions on a specific MH. 

  

A convergence scheme 

maintains consistency among 
replicated aggregate and base 

tables. 

Data items are committed locally 

directly after the execution of a 
HiCoMo transaction. However final 

commit is dependent on the successful 

re-execution of HiCoMo transactions 
as Base transactions. 

 

Table 4. PRO-MOTION Model ACID Properties. 

Model Atomicity Consistency Isolation Durability 

PRO-

MOTION 

MH: Local commit using 2PC 

 

DB Server: synchronization operation to 
reconcile the MH's data store with the 

permanent data store. 

Is maintained through constraints 

and state information in the compact 

upon dispatch to the MH. 

Uses isolation levels (0-10) 

applied individually to each 

generated compact 

Data expiry and reconciliation 

conflicts may rollback locally 

committed transactions 

 


