
Query Acceleration in Multimedia Database Systems

Ramzi A. Haraty and Rawa Karaki
Department of Computer Science and Mathematics

Lebanese American University

Beirut, Lebanon

e-mail: rharaty@lau.edu.lb

Abstract--With the increasing popularity of the World Wide

Web comes the enormous increase in stored digital contents,

which could challenge users to search and use the multimedia

data efficiently. This work focuses on hastening techniques for

efficient retrieval of multimedia data. In this paper, we exploit

the use of bit-vectors to accelerate queries in multimedia data-

bases. We use a compressed bit-vector to minimize the amount

of data cashed on disk; thus, reducing the amount of memory

and time needed to execute queries. We also compare our

scheme with other related strategies.

Keywords-multimedia; bit vectors; query accelerations.

I. INTRODUCTION

 Multimedia databases have become one of the puffs in
computer science technology. It is a recent evolution of the
Internet and data warehousing. Many authors wrote about
the evolution of multimedia databases and ways to imple-
ment it [1][2]. Multimedia is a mix of multiple mediums -
images, sounds, music, audios and videos etc. As long as the
development of the Internet and computer technology con-
tinues, multimedia files will appear more and more in many
applications. For that reason, it is important and significant
that the data files of multimedia objects be arranged, or-
dered and categorized so we can simply access them at any
time. Therefore, multimedia databases are the necessary tool
to handle and support these enormous multi-media object
files.
 A multimedia database is a type of database that is similar
to all other database types except that it contains multimedia
files in its collection. To organize and manage multimedia
data files, a multimedia database management system is
needed. It is a program that runs and directs the collection of
media files and allows entry for end users to retrieve multi-
media files or objects. In general, multimedia databases hold
images, audio, video, animations and many other file forms.
All files or data are saved as binary forms in the multimedia
database.
 Multimedia database implementation differs from regular
database implementation in the design of the media objects

and files where the files are kept and stored. Different char-
acteristics of multimedia data represent the diversity of the
data since they are complex--composed of audio-visual data.
Research shows that objects in multimedia data are complex
and involve a chained structure that can hold a connection
between them [3][4]. Static media, such as text, graphics,
and images, are time-independent like. For instance, image
files do not have time-related action because there is no
connected time factor. Video files, on the other hand, are
dynamic, and have both time and dimensional dependency.
This is due to the fact that a video is composed of multiple
ordered image frames which associate to form the video file.
 In this paper, we use a compressed bit vector for multi-
media data retrieval to select files from a database more
efficiently. The method facilitates rapid searching of multi-
media data objects in a multimedia database. A single bit
vector is used to determine matches for the main query,
returning a reduced set of multimedia objects instead of the
entire multimedia data object; thereby greatly reducing the
query search time, increasing the efficiency of the process
by allowing the bit-level operations and minimizing the cost
and amount of data transferred. The execution time is exact-
ly proportional to the size of input. The algorithm complexi-
ty is of order O(n).
 The rest of this paper is organized as follows: Section 2
provides a brief explanation of multimedia database man-
agement systems. Section 3 presents related work. Section 4
presents the compressed bit vector algorithm and its execu-
tion results. Section 5 gives the conclusion and future work.

II. MULTIMEDIA DATABASE MANAGEMENT
SYSTEMS

 With the evolution of Internet and computer users, mul-
timedia data text, graphics, and images a greater effect on
our daily lives. That is why finding a new technique to easi-
ly retrieve enormous multimedia information and a file, at
any point of time, is in high demand. Any multimedia object
can be generally described as a group of extended, shapeless

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

series of bytes. These objects are called BLOBs (Binary
Large Objects). BLOB files are usually very large in size;
for this reason, database management systems provide par-
ticular maintenance to insert, delete, modify or retrieve
BLOB objects from database.
 Modern databases are frequently capable of storing
BLOBs and CLOBs (Character Large Objects), as columns
in their tables. Data stored in a BLOB column can be ac-
cessed using connectors and manipulated using client-side
code. Reading a BLOB from the database is a slow task
considering the size of a multimedia object. A BLOB can
contain as much as four gigabytes of data for each field.
Multimedia database systems are thus required to provide an
efficient cache of the BLOB files, but this is not sufficient
for multimedia implementation maintenance. Therefore, a
query of a prolonged continual series of bytes is restricted to
a matching pattern and reorganization of a BLOB multime-
dia object may return zero results due to missing construc-
tional information. Even if it can be realized, to draw out
information of the object in realistic time, for example
working with pattern identification techniques, would be
unrealistic. Thus, a multimedia database system should keep
an analytical structure of the BLOB files. Multimedia ob-
jects can be saved in smaller parts to allow easier retrieval
of BLOB objects based on content. Multimedia data is size-
able and have an impact on the retrieval, insertion and ma-
nipulation of multimedia data files. The large amounts of
data to be processed can be checked against those that need
to be processed. Table I illustrates the enormous sizes of
data for media files of different types.

III. RELATED WORK

 Querying and retrieving information in multimedia data-

bases differs from traditional databases [5][6]. A fairly

straightforward search can be done in alphanumeric data-

bases. Multimedia databases contain pictures and different

complex multimedia data objects; thus, the database is not

easily indexed, classified and retrieved [7]. How is it possi-

ble to retrieve a picture with a cup of water or a horoscope

sign? Those shapes are difficult to recognize. Some retrieval

classes for multimedia databases include:

 Retrieval by Browsing (RBR): Browsing multimedia

objects to retrieve the best matching file. For example,

using a simple interface to let users browse small imag-

es known as “thumbnails” to pick the image that

matches the query.

 Retrieval by Metadata Attributes (RMA): Designing a

query that addresses the Meta and logical characteris-

tics. For this purpose, any media file is stored with in-

formation describing the file. For example, we will not

query an image with a bird but we will address our

search to find which media handles the keyword ‘bird’

as its meta information.

 Retrieval by Shape Similarity (RSS): It is a type of

retrieval based on media content. Searching in a multi-

media database based on shape similarity of the file.

For example, retrieve all the images that contain a cir-

cle.

 Retrieval by Content Attributes (RCA): Query is sent

with enough detail describing the file to be retrieved.

For example, retrieval of all images that contain a spe-

cific celebrity.

 In this paper, we focus on the RBR and RMA since they

are the most widely used retrieval classes in multimedia

databases.

A. The Retrieval by Browsing

 A user who requests the search for a specific file uses

terms and details to illustrate the retrieval system. Then, the

software matches the query with existing matching objects

and returns a list of files to the end user for examination.

The end user then considers the retrieved files and picks

items that exactly match his needs. This type of retrieval

works best in finding the exact requested file, but multiple

problems appear with its implementation:

1. End users find it hard to formulate queries.

2. Queries may return only unwanted files and result in

too many suggested unwanted matches.

3. Query terms are not properly valued.

4. Multiple forms of image and audio files that need con-

version.

TABLE I. SAMPLE MEDIA TYPES, FORMATS, AND RELATED

DATA VOLUMES AND TRASFER RATES [5].

Media

Type

Sample

Format

Data Volume Transfer Rate

Text ASCII 1MB/ 500 pages 2KB/page

B/W

Image

G3/4-Fax 32MB/500 images 64KB/page

Color

Image

GIF,

TIFF,

JPEG

1.6GB/500 images

0.2GB/500 images

3.2MB/image

0.4MB/image

CD-music CD-DA 52.8MB/5 minutes 176KB/sec.

Consumer

Video

PAL 6.6GB/5 minutes 22MB/sec.

High

quality

video

HDTV 33GB/5 minutes 110MB/sec.

Speech m-law,

linear;

ADPCM,

PEG

audio

2.4 MB/5 minutes

0.6MB, 0.2MB/5

min.

8KB/sec.

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

 Different authors have proposed that browsing, which

uses the human recognition capabilities, can control and

solve the above difficulties [8][9]. Though, the retrieval by

browsing is suggested to be a direction solving many prob-

lems in multimedia retrieval and handling multimedia sys-

tems, but it is logically seen as a difficult and time ineffi-

cient task for humans to solve [10].

B. The Retrieval by Metadata Attributes

 Generally, human beings have the power to retrieve and
correlate information efficiently. It is unfeasible to search
millions of data by simply “staring” in order to assemble
diverse documents, which may involve texts, videos, audio
and images files, either alone or as multimedia items. Thus,
we seek a simple technological multimedia search based on
known information of the file.
 Metadata are data about data. Metadata can describe any
data using different categories: quantity, quality, materials,
shape and different properties of the data as tools to find,
understand and access the data files. Metadata details can
aid users to have an explanation about the data being
searched in multimedia databases. The picture itself de-
scribes nothing more than an ordinary image with colours.
Without having the metadata description associated with the
picture, it will be out of question for machines to know the
properties of this picture. For example, if we would like to
know when and where this picture was taken, or its resolu-
tion etc., we turn to Metadata. All this information does, is
provide a key that aids in specifying the properties of the
image to be used in many applications [11].
 The Metadata model requires descriptive information of
the content, combined with contextual information, saved in
the multimedia database in reference to the multimedia ob-
ject, and used as an information tool for browsing with a
point of association of a specific media. Descriptive infor-
mation is valuable for searching a multimedia object, and is
of major importance when contacting explored results
where the attribute, such as a photographer name, a singer
name or date, are applied to choose and retrieve the file. The
metadata representation of the file is flexible and adopts a
multilevel approach for describing the file to permit multi-
ple particles to describe the facts and figures of the file. The
metadata model may be unusable to work on a single level
in describing a media file with multiple classes of represen-
tation [12]. For an image, multiple descriptive data are asso-
ciated with saved image snaps that can provide accommoda-
tion in the model. For a video file in a broadcasting station,
information could be automatically produced for each shot
or segment that describes the scene.
 Lord and Pratt reported a technique of retrieving data
from a BLOB data warehouse using SAS as the data analy-
sis tool [13]. The data warehouse architecture requires stor-
ing summary data in traditional database relational data-
bases and storing raw chip data in a multimedia database
BLOB data type. With this BLOB data type, many opportu-
nities have opened up for experimenting with various meth-
ods of retrieving data. Since the databases are fragmented
among multiple machines (due to the large data volumes),

and to make it easy to register a structure that is required to
access the inner parts of the BLOBs, a machine is set aside
specifically to direct the client applications and SQL users
to the machine where the required data resides. This ma-
chine also provides the information necessary to extract
parts of the BLOBs. We refer to this machine as the applica-
tion director. At the database end, the objects would be too
large to be practical. With data volumes in the hundreds of
gigabytes, adding descriptive information into the records
would explode the data storage requirements beyond rea-
sonable limits. Objects also allow us to store large numbers
of data values.
 After the storing of the object, we have to specify how to
access this object. This is where the registry comes in. The
registry is a set of tables that define the type of object; in
this case the type is defined by the application, (not neces-
sarily a database data type) and the contents of the object.
Each object is comprised of elements that have a name,
type, and length. All of this information is stored in the
registry. The query looks into the objects and extracts that
element, returning it as a column in the user view. An ex-
ample of a query is as follows:

SELECT LOT, WAFER, CHIP, SETELEMENT
 (OBJECT1, D_VAL1)
FROM DB.TABLE1
WHERE LOT = ‘123456789’ AND WAFER = ‘ABCDEF’

 This query gets the BLOB object1 in the database from
the TABLE1 table and finds the D_VAL1 element in each
object, returning it as a column in the table.
 Srivastava and Velegrakis [14] described that several
metadata management tools consider the metadata as an
integral part of the data, which means that metadata cannot
be retrieved without also retrieving the data with which it is
associated. The authors showed that storing the metadata in
independent tables, associated to the data through the q-
values, allows them to be queried and retrieved inde-
pendently. For instance, if a user would like to know the
sources that have been used to collect info of a file, he can
simply query the metadata table alone.

IV. THE COMPRESSED BIT-VECTOR FOR

MULTMEDIA DATA RETRIEVAL

 The existence of an enormous volume of media data files

questions the aspects of the management of multimedia

objects and the problem of implementation. Typically, que-

ries in multimedia database are multidimensional and have

complex selections. Users that request specific queries in

multimedia databases usually find it hard to find answers to

all requirements. Due to these characteristics, bit-vector

indexing techniques have shown promising results for pro-

cessing multimedia databases [15]. A significant advantage

of the bit-vector technique is that complex logical selection

can be performed very quickly via bit-wise AND, OR and

NOT operators. In this paper, we further explore the issues

of query acceleration using bit-vectors, and we concentrate

on optimizing one of the query operations “Selection,”

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

which is further discussed with simple queries, and later

with more complex queries using the four different types of

joins: hash join, inner join, merge join and nested loop join.

The space for the compressed bit-vectors works best com-

pared to other techniques.

 A bit-vector is a vector or array of data that stocks bits

briefly. A bit vector is time composed from the bit values of

the collection {0, 1}. Bit-vector is a term applied here to

denote a large classification and indexing plan that stocks

index as bit sequence. A bit-vector is a bit string in which

each bit is mapped to a record ID. A bit in a bit-vector is set

to 1 if the corresponding ID has a property “P” and is reset

to 0, otherwise. The property “P” is true for a record if it has

the value “x” as attribute “X.” The query selection can also

involve many attributes. Bit-vectors permit vectors of bits to

be stocked and handled in the memory set for extended time

phases. Bit-vectors can potentially explore bit-level similari-

ty, utilize the data cache to the max, and minimize access to

memory. Bit-vectors usually work best in different data

forms on reasonable data sets, and on those that are efficient

asymptotically [16]. To further improve their effectiveness,

we study their compression scheme, which will potentially

minimize the area used without expanding the managing

time of the query.

 Generally, a bit-vector is stocked as a group of bits and

the majority of operations on regular bit-vectors are logical

bitwise operations. Considering our concerns in using the

bit index on huge databases, the main aid is to reduce the

sizes of the index. In addition, we aim to efficiently execute

logical operations on the compressed bit-vectors. A problem

with using uncompressed bit-vectors is their large size and

possibly of high expression assessment costs when the in-

dexed attribute has a high cardinality [17]. A single tech-

nique to deal with using bit-vectors on high-cardinality at-

tributes problem is to store them in a compressed bit-vector

form. Using compressed bit-vectors has multiple advantages

that potentially adjust performance: minimized disk space

needed to stock the indices, faster reading of the indices

from the disk into the memory, and more cached indices in

the memory with this compressed form. Several Boolean

operation evaluation algorithms, which operate on com-

pressed bitmaps without having to decompress them, might

be faster than same operations on the regular bit-vectors.

The scheme for compressing data, in addition to transform-

ing data, guides the reducing of enormous volume required.

The technique here is to alter the issued multimedia data bit-

vector to another modified area to eliminate the redundan-

cies in the real data.

 A bit vector “B” of “u” bits can be represented as B[0::u).

It can be stored in uH1(B) bits so that the operations can be

answered in constant time. We will only save the 1-bits in if

the response to the query is true. With this representation of

“B,” we can access any block of size “b” in constant time,

which is sufficient for implementing rank and selecting. In

addition, access queries can be answered in constant time,

as well.

Figure 1. Algorithm workflow.

 Decompression is made from the backwards process to re-

transform and decode the data to its native origin form. This

operation generally encounters some data loss, which is a

major problem of multimedia applications. Our algorithm

ensures negligible loss of data when retrieving information.

 Our algorithm compresses bit-vector for multimedia data

retrieval and uses these bit vectors to return exact answers to

any query in multimedia databases, with any retrieval pro-

cess used. For example, a specific shape may be compared

to a number of pictures in a multimedia database to find a

picture or many pictures with the same characteristics. The

search may result in either one or more matches found, or

no matches at all in a set of objects in the multimedia data-

base.

 Figure 1. is an example operation on how a query can be

handled in searching for a specific attribute in a multimedia

database. First, a receive query operation receives a query

item. When a user requests a query in multimedia database

with some attribute, a bit vector index is created for each

attribute. Each bit vector index indicates whether each of the

attributes in the selected database does or does not exist in

any of the retrieval strategies used. When a query is re-

ceived, the bit vector indices associated with each of the

selected attribute values are then logically ANDed together

to form a single result bit vector index. The result bit vector

index identifies a reduced set of accepted IDs of the data

table containing the multimedia objects. This reduced set of

IDs in the multimedia data objects returned by the bit opera-

tions may then be quickly searched using a linear scan to

determine a match or matches for the query point. To re-

trieve resulting matches, we simply select the IDs of the

query table that contain a “1” bit in the bit-vector. The

stored procedure used in building the bit vector of the speci-

fied attributes for any query in multimedia database is de-

picted in figure 2. For simplicity and straightforwardness,

we used the “retrieval by meta and logical attributes” strate-

gy in a real university database.

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

DROP PROCEDURE IF EXISTS mysql_BitVectorTable //

CREATE PROCEDURE mysql_BitVectorTable (IN attributeValue

VARCHAR(255))
BEGIN

 DECLARE idSelected VARCHAR(255);

 DECLARE exit_loop BOOLEAN;
 -- Cursor for select statement

 DECLARE query_cursor CURSOR FOR SELECT id FROM

students where city = attributeValue;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET

exit_loop = TRUE;

 DROP TABLE IF EXISTS bitvector;
 -- create a new table in database with id and Boolean

 CREATE TABLE bitvector (id VARCHAR(7),bitValue BOOLEAN);

 OPEN query_cursor;
 query_loop: LOOP

 FETCH query_cursor INTO idSelected;

 -- save in bitvector
 INSERT INTO bitvector (id,bitValue) VALUES

(idSelected,1);

 IF exit_loop THEN
 CLOSE query_cursor;

 LEAVE query_loop;

 END IF;
 END LOOP query_loop;

END //

Figure 2. The Create Bit Vector stored procedure.

 After the construction of the bit vector, it will be stored in

the database as a regular table. Each bit vector contains two

fields: The first corresponds to the original table index, and

the second contains the bit 0 or 1 referring to the absence or

presence of the main query attribute. Each bit vector should

contain the same number of indexes as the original table.

But to compress our bit vector, we will only save the 1 bits

associated with the presence of the query attribute and re-

move the 0 bits from the bit vector. Thus, the bit vector will

contain a smaller number of bits and minimize the response

time of the process.

 The first experimental query is to select all information

and profile picture of students that belong to a specific cam-

pus in a specific major. We ran our algorithm on a database

table containing multimedia files. We used a traditional

database application that uses fixed sized data, but the mul-

timedia size of data can vary dynamically. All unformatted

data (mainly text and images) has been handled in this data-

base system through BLOBs. They usually support only a

few generic operations, such as reading or writing parts of

BLOB. The first table used is the student application table

with student images in each record. The table includes more

than 510,000 records of student information. The tested

query involves retrieving the student images that match

certain required parameters. The outcome result will deter-

mine the time it took to handle this simple query.

 In this simple query, the program indicates that it requires

an execution time of 107.334 seconds. This means that there

is a need for a method to run queries and return results in a

more efficient time. The stored procedure, described above,

is used to build the bit vector for the same simple query. A

stored procedure is built for every attribute value in the

query. After selecting the first attribute, a bit vector table is

created and saved in the database. A second bit vector is

created for the second attribute. Creating both bit vector

took:

0.799+1.446 = 2.245 seconds

 Next, we will “AND” all bit vectors created to maintain

the final bit vector. Using a time calculator, the retrieval of

student images took 3.84 seconds to display on the website.

We have also tested our algorithm on different kinds of

queries. Other than the simple query noted above, we used

two attributes for tables with an index.

 We ran our algorithm on simple queries using two attrib-

utes for tables without index, then for complex query using

hash join, inner join, and nested loop join. To test our algo-

rithm on another more complex query, we will use the “in-

ner join” type. For example, we ran our algorithm with the

following query:

SELECT id FROM applications

INNER JOIN majors

ON applications.mjrid = majors.mjrid

WHERE attribute1 = ‘a’ and attribute2 = ‘b’

 The time it took to build the results of this query in the

regular case is: 112.182 seconds. Furthermore, the pro-

cessing time to display the result is: 3.6691 seconds. The

required total time for our algorithm is: 10.73 seconds.

The previous results show the efficiency and rapidity of

searching of multimedia data using the bit vector algorithm

with the metadata retrieval system. Table II shows the time

of different kinds of queries with and without applying our

algorithm.

 To further enhance our algorithm, we wrote it without a

stored procedure function. Code that generates the bit vec-

tors stored on the web server functioned as the bit vector.

The query selected each attribute alone to retrieve the IDs

that match the query results. Then the bit vector was saved

in the memory using a key and a value. The key corresponds

to the media file ID in the database, and the value corre-

sponds to {0, 1} of the bit vector. To compress our bit vec-

tor, we only saved the 1 bits in memory.
TABLE II. EXECUTION TIME OF VARIOUS QUERY STRATEGIES.

Query Type Running Time Without

Bit-Vector Algorithm

Running time

With Bit-Vector

Algorithm Using

Stored Procedure

Query with Attrib-

utes For Table

With Index

107.33 seconds 6.87 seconds

Query with Attrib-

utes For Table

Without Index

121.54 seconds 11.28 seconds

Query with Inner
Join

112.18 seconds 10.73 seconds

Query with Hash

Join

106.53 seconds 5.53 seconds

Query with Nested

Loop Join

107.87 seconds 6.71 seconds

Query with Merge
Join

107.12 seconds 6.54 seconds

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

Figure 3. Comparison of the different algorithm.

 After saving the bit vectors for each attribute, we added

the “AND” or “OR” in the bit vectors according to the que-

ry requirements to get the final IDs that respond to the query

result. The results are depicted in figure 3.

 To calculate the complexity of our algorithm, we defined

time taken by the algorithm without depending on the im-

plementation details as our algorithm runs in linear time.

The execution time is exactly proportional to the size of

input. The algorithm complexity is of order O(n).

V. CONCLUSION

 A new strategy is proposed for retrieving multimedia data

objects stored in a database. We searched for specific que-

ries selecting objects from a multimedia database such as

searching for particular images stored in the database. As a

result of the search, either one or more true results are

found, or no result exists in the set of objects in the data-

base. Our bit vector for retrieving media files algorithm was

proposed and tested on real data. In fact, bit vector indexing

techniques have shown promising results for processing

multimedia databases. We have explored the issues of query

acceleration using bit vectors, and we have concentrated on

optimizing “Selection” using the four different types of

joins: hash join, inner join, merge join and nested loop join.

To optimize the results returned, our method uses a com-

pressed bit vector to save the accepted rows of information.

This method guarantees fast and efficient query results. This

technique also minimizes the cost and amount of data trans-

ferred. Our test results show that the simplest approach to-

wards solving queries in multimedia database is the linear

scan. This approach outperformed more complicated ap-

proaches.

 As for future work, we are currently working on using

this compressed bit vector to construct abstractions to be

used for more powerful concurrent query analyses in multi-

media databases, such as saving repeated queries in existing

libraries. This may lead to more efficient and faster query

response time.

ACKNOWLEDGMENT

 This work was sponsored by the Lebanese American

University - Beirut, Lebanon.

REFERENCES

[1] G. Chechik, . Le, M. Rehn, S. Bengio, and D. Lyon, “Large-

scale content-based audio retrieval from text queries”. Proc.

of the ACM MIR’08, Vancouver, Canada, October 2008.

[2] D. Grangier and A. Vinciarelli, “Effect of segmentation meth-

od on video retrieval performance”. Proc. IEEE International

Conference on Multimedia and Expo, pp. 5-8, Amsterdam,

The Netherlands, 2005.

[3] O. Kalipzis, “Query processing in multimedia databases”.

Journal of Applied Science, Volume 2, pp. 109-113, 2002.

[4] H. Kosch and M. Döller, “Multimedia database systems:

where are we now?” Institute of Information Technology,

University Klagenfurt Universitätsstr. Austria, 2006.

[5] H. B. Kekre, “Image retrieval with shape features extracted

using gradient operators and slope magnitude technique with

BTC”. International Journal of Computer Applications, Vol-

ume 6, Number 8, pp. 28-33, 2010.

[6] P. Sapra, S. Kumar, and R. K. Rathy, “Query processing in

multilevel secure distributed databases”. Proc. of the Fourth

International Advance Computing Conference, 2014.

[7] P. Sapra, S. Kumar, R. K. Rathy, “Development of a concur-

rency control technique for multilevel secure databases”.

Proc. of the First International Conference on Reliability, Op-

timization and Information Technology, February 2014.

 [8] X. Ma, D. Schonfeld and A. Khokhar, “Video event classifi-

cation and image segmentation based on non-causal multi-

dimensional hidden Markov models”, IEEE Transactions on

Image Processing, Vol. 18, No. 6, pp. 1304-1313, June 2009.

[9] B. V. Patel and B. B. Meshram, “Content based video retriev-

al systems”. International Journal of UbiComp, Vol. 3, No. 2,

pp. 13-30, 2012.

[10] T. C. Rakow, E. J., Neuhold and M. Lohr, “Multimedia data-

base systems - the notions and the issues”, Tagungsband GI-

Fachtagung Datenbanksystems, Buro, Technik and Wissen-

Schaft, Springer Informatik Aktuell, Berlin, 1995.

[11] C. Ribeiro and G. David, “A metadata model for multimedia

databases”. Proc. International Cultural Heritage Informatics

Meeting, Archives and Museum Informatics, pp. 469-483,

2001.

[12] A. Burad, “Multimedia databases”. Seminar Report, Roll No :

03005009, Computer Science and Engineering, Indian Insti-

tute of Technology, India, 2006.

[13] L. Lord and C. Pratt, “Retrievals from DB2 BLOB (Binary

Large Objects) data warehouse using SAS”. Proc. of NESUG

Conference, 2000.

[14] D. Srivastava and Y. Velegrakis, “MMS: using queries as data

values for metadata management”. Proc. of the International

Conference on Data Engineering, 2007.

[15] B. Panda, W. Perrizo, R. A. Haraty, “Secure transaction man-

agement and query processing in multilevel secure database

systems”. Proc. of the ACM Symposium on Applied Compu-

ting (ACM SAC 1994), pp. 363-368, 1994.

[16] R. A. Haraty and R. C. Fany, “Query acceleration in distribut-

ed database systems”. Colombian Journal of Computation.

Volume 2, Number 1, pp. 19-34, 2001.

[17] J. F. Abbass and R. A. Haraty, “Bit-level locking for concur-

rency control”. Proc. of the Seventh ACS International Con-

ference on Computer Systems and Applications (AICCSA

2009) – Sponsored by IEEE. Rabat, Morocco, pp. 168-173,

May 2009.

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10203

