Peer-to-Peer Netw. Appl.
DOI 10.1007/s12083-015-0361-z

Data damage assessment and recovery algorithm from malicious
attacks in healthcare data sharing systems

Ramzi A. Haraty' - Mirna Zbib' - Mehedi Masud?

Received: 1 October 2014 / Accepted: 20 April 2015
© Springer Science+Business Media New York 2015

Abstract In a data sharing system in a cloud computing
environment, such as health care system, peers or data
sources execute transactions on-the-fly in response to user
queries without any centralized control. In this case con-
fidential data might be intercepted or read by hackers. We
cannot consider any centralized control for securing data
since we cannot assume any central third party security
infrastructure (e.g., PKI) to protect confidential data in a
data sharing system. Securing health information from
malicious attacks has become a major concern.
However, securing the data from attacks sometimes fail
and attackers succeed in inserting malicious data. Hence,
this presents a need for fast and efficient damage assess-
ment and recovery algorithms. In this paper, we present
an efficient data damage assessment and recovery algo-
rithm to delete malicious transactions and recover affected
transactions in a data source in a health care system based
on the concept of the matrix. We compare our algorithm
with other approaches and show the performance results.

Keywords Data security - Data exchange - Healthcare data
protection - Healthcare data tampering

P4 Ramzi A. Haraty
rharaty@lau.edu.lb

Mima Zbib
mirna.zbib@lau.edu

Mehedi Masud
mmasud@scientist.com

Department of Computer Science and Mathematics, Lebanese
American University, Beirut, Lebanon

Department of Computer Science, Taif University, Taif, Saudi Arabia

Published online: 07 May 2015

1 Introduction

In a global e-healthcare environment, a patient can receive
treatment anywhere and anytime while s/he is on the go.
This necessitates sharing of data among different stakeholders,
e.g., family physicians, local clinics and hospitals, medical
laboratories, pharmacists, and other stakeholders by executing
queries and transactions about patients’ treatments, medica-
tions, and test results. It is desirable to protect the privacy of
a patient when peers exchange and update data among them-
selves. Furthermore, a peer may not wish to disclose his/her
identity to others in a network during data exchange to avoid
different attacks including sophisticated ones such as target-
oriented attacks.

In general, securing information takes place at three levels:
prevention, detection and recovery. Prevention might fail and
detection might be late, in this case some data might be
corrupted. Detection can be split into two categories: the sta-
tistical models and the misuse detection [1]. It is assumed that
an intruder’s behavior is noticeably different from that of a
normal user, and statistical models are used to aggregate the
user’s behavior and distinguish an attacker from a normal user.
The aim, after this corruption and after detecting that some-
thing malicious has occurred, is to remove and clean the cor-
ruption and its consequences.

Prevention, detection and recovery are three important
phases in any “live” system. Malicious users manage to
overcome preventative security measures and systems.
None of the detection systems ensure that an attack will
be immediately detected. Hence, damage could spread af-
fecting other “clean” transactions as well. Therefore, the
need arises to assess every transaction after the first attack
to confirm if it has been affected by the malicious transac-
tion and whether it needs recovery. In our work, we aim at
bringing back the integrity of information.

@ Springer

Peer-to-Peer Netw. Appl.

Many works have been carried out in this area; some pro-
posed the use of graphs, while others proposed the use of
clusters and sub-clusters, yet others opted for using multiple
matrices. Each of the proposed algorithms had its own advan-
tages and disadvantages. In our work, we are interested in the
complexity and efficiency of the recovery process. In some
cases the adversary’s intentions are not only to insert mali-
cious transactions but also to inflict denial of service. In this
context many techniques have been provided by researches;
some of the most significant are proposed in [2]. In addition,
in [3] work has been done to reduce the downtime of the
system when performing a damage assessment and recovery
from an attack. In [3], the authors proposed the usage of mul-
tiple agents to work on the damage assessment and recovery in
parallel. Sometimes the size of the log file might increase
tremendously before discovering that an attack has occurred
which will require more time to assess and recover from the
malicious transaction and its effects. This increase in recovery
time could lead to denial of service, which is intolerable in
health care organizations. We are interested in finding an al-
gorithm that prevents such drawbacks or at least one that re-
duces them. One of the important issues that should also be
addressed is what information should be saved in the log file
as we prevent excess 1/O. For this purpose, researchers have
proposed using auxiliary structures for keeping track of de-
pendencies [4-6].

Previous work done in this area always required the
need to scan the entire set of data to ascertain that it is
clean, i.e., transactions that were committed before the
attack [7, 8]. In our approach, the use of matrices have
given us many advantages among which the reduction in
the I/O and the advantages in indexing. The fact that the
matrices can easily be indexed has given us the ability to
skip transaction that we are sure are clean. Hence, such
advantages have given us an aid in providing a fast and
efficient algorithm that is capable of resuming the integ-
rity of the original data in an expedited fashion.

In this paper we present a damage assessment and recovery
algorithm that keeps a matrix along with the logging process.
This matrix saves the dependency between transactions and
data items. During the recovery process all the needed infor-
mation will be retrieved from the matrix. The aim of this work
is to ensure speedy and efficient recovery. It requires only
scanning part of the matrix to be able to discover the depen-
dency rather than scanning the entire log file. In addition, the
use of bits in our algorithm requires less processing.
Dependency of transactions is saved in only one matrix, which
requires less computational time and space. No logical opera-
tions and no graphs are used in this model as is the case with
other approaches. All of this contributes to making our ap-
proach more time and safety efficient than previously pro-
posed algorithms. The remainder of the paper is organized
as follows: section 2 presents related works. Section 3 presents

@ Springer

the proposed algorithms. Section 4 presents the experimental
results. And section 5 concludes the paper.

2 Literature review

In a data sharing system, such as the health care system, it is
hard to identify which user is malicious and which is authen-
ticated when dealing with electronic data and transactions.
The system treats all the users the same and accepts their
transactions. Therefore, every user is considered a malicious
user and the transactions are executed; however, actual action
is not taken in the database until a certain period of time
elapses [9]. After execution of the transactions, the behavior
is classified as either malicious or non-malicious [10].
Accordingly, and based on this behavior, transactions can be
committed or aborted.

It is normal practice to directly recover the system when an
attack is detected by an intrusion detection system. All trans-
actions from the point of the attack and onwards should be
assessed whether they are affected or not. Two approaches
exist for assessing the malicious transaction effects: transac-
tional dependency [11] and data dependency [12].
Transactional dependency stores all dependent transactions
that depend on one another in one segment. Consequently,
the log is divided into multiple segments. Panda and Haque
[13] used the data dependency approach where each segment
stores only dependent operations. Therefore, a transaction’s
operations may be stored in different segments. Each read/
write operation in the transaction has a block number; this
number shows dependency between operations. The authors
suggest the use of a directed damage demonstration graph,
which only presents the affected data items. The disadvantage
of this algorithm is that it is limited to data dependency. Panda
and Gordano in [14] proposed two data dependency algo-
rithms; the difference between them is that in the first the
damage assessment and recovery algorithms are performed
simultaneously; whereas, in the second each one is performed
separately. This difference implies different behaviors at the
algorithm level as well. For example, when both damage as-
sessment and recovery are done simultaneously, the system
will have to go through denial of service for a longer period
of time in order to recover completely. In both approaches the
damage assessment works using directed graphs, where the
nodes represent data items. When the intrusion detection sys-
tem reports the occurrence of a malicious transaction, a node
for each data item will be created. This graph helps in mapping
how the damage has spread.

The authors in [15] suggested segmenting the log files so
the work would only be done on the part of the log that is
affected. Operations are clustered according to their depen-
dency where each cluster contains dependent operations.
This clustering is done periodically for the active transactions.

Peer-to-Peer Netw. Appl.

Every operation will be stored in only one cluster, but a trans-
action can belong to more than one cluster. However, deleted
transactions cannot be retrieved, so maliciously deleted trans-
actions might be skipped.

Fu et al. [16] proposed the Fine Grained Transaction Log
(FGTL). The disadvantage of this method is that the associa-
tion degree of the transaction and the FGTL are inversely
proportional. Hence, even though the integrity of the log file
will be preserved; yet, the services will face a major
degradation.

Lomet et al. [17] dealt with the problem of bad user trans-
actions that result in invalid data. Their method identifies the
initial invalid data and all subsequent data that depends on it.
Only transactions writing invalid data need to have their ef-
fects “de-committed”. The authors identified this closure of
invalid data, via logging data reads. Their method then
removes only the effects of invalid transactions.

Traditional methods suggest scanning the log file from the
start of the attack until the end of the file to undo and redo the
affected transactions. In [18], the authors suggested
segmenting log files into clusters. However, the size of the
dependent transactions cannot be controlled; and hence, the
clusters may grow in size. This imposes a weakness in the
model, since two dependent transactions may belong to two
different clusters because of size limitation. Hence, more work
will be needed. To solve this problem, Haraty and Zeitunlian
[19] proposed the use of clusters and sub clusters. Data inside
a cluster are records that have some data dependency; where-
as, data in the same sub cluster could be there for one of the
following two reasons: number of data items or space occu-
pied. Zhou, Panda and Hu [20] proposed a similar model for
distributed databases. The proposed model works on transac-
tion dependency in order to recover from malicious attacks.
This work extends the work of Zhou and Panda [21] and
requires additional structures to recover when working on
distributed databases.

Xie, Zhou, Feng and Hu [22] suggested the use of a
before-image (BI) table to keep track of all deleted trans-
actions and to help analyze potential reads. The BI is a
data object created in the database. BI tables are tables
that are not accessible by users and have the same struc-
ture as the original tables, except that they do not have
any constraints. To avoid the problem of data redundancy,
Xie suggested using a time window to delete data items
and restrict the size of the BI tables.

The use of a Local Damage Assessment and Recovery
(DAR) Manager and a Local DAR Executer on each site
was suggested by Liu and Yu [23]. The Local DAR
Executer starts by identifying all affected sub-transactions
and continues to clean them. The algorithm requires global
coordination between different sites. The algorithm starts by
identifying the bad transactions and then sending them to the
Local DAR Manager for cleansing.

Lala et al. [24] suggested clustering the transactions so
there is no need to search transactions that have no effect. In
this model, an additional column was added to each of the
matrices that contain the cluster ID to which this transaction
belongs. In such a method, the cluster may contain transac-
tions more than just what is directly related. In addition, the
cluster size must be manageable or else the cluster may con-
tain all the transactions. Yet, if the cluster size is limited, then
some related transactions might be in different clusters. Thus,
all of the clusters need to be checked.

Ray et al. [25] performed analysis on existing algo-
rithms along with a suggestion of new techniques. The
complexity analysis was performed to check the complex-
ity of the proposed algorithm as well as the algorithm
suggested in [17]. The aim of this paper was to reduce
the damage assessment latency so damage spreading will
not occur. The disadvantage found in their work was that
the log file of this algorithm is huge; and therefore, it will
take time to scan the part of the log after the malicious
transaction. As for the algorithm proposed in [17], it
showed a worst-case running time of O(viogv+s), where
v represents the number of affected transactions and s
represents the sum of sizes of the transaction records.

If we compare our approach to the previously
discussed approaches we can find that we have overcome
many shortcomings. Our approach, unlike what was pro-
posed by Panda and Gordano in [14], overcomes the issue
of denial of service, which might be an indirect intention
of the attacker. Moreover, if we compare our approach to
others that base their work on matrices, we note that in
ours we use one matrix rather than two, which means we
are already saving almost half the space. In addition, we
cut down on operations manipulating the two matrices,
which also saves time. Despite the fact that clusters gave
the advantage of classifying the data, yet they had the
disadvantage of having the same transaction belonging
to more than one cluster; and consequently, the cluster
sizes may grow enormously. The usage of a matrix has
also overcome this issue, as any transaction will be pres-
ent only once in our matrix; hence, the size of the matrix
is known.

3 The proposed approach

In this section, we present the algorithm for data damage as-
sessment and recovery to recover from malicious transactions
in a data source. The algorithm triggers when a set of mali-
cious transactions are received from an intrusion detection
system (IDS). Our algorithm is responsible for assessing the
committed transactions and classifying them as clean or af-
fected transactions; consequently it deletes the malicious
transactions and recovers the affected ones. Our damage

@ Springer

Peer-to-Peer Netw. Appl.

assessment algorithm is only responsible for assessing affect-
ed transactions; it is the responsibility of the IDS to provide a
list of transactions that are malicious.

In our approach, we assume we have a rigorous serializable
history, as serializability theory provides correctness [26]. A
sequential log file is also maintained in which only committed
transactions are saved. This log file cannot be accessed by any
users at any time and it will be used during the recovery
process. Our approach requires also the use of check points
[27].

The checkpoint is a database event used in order to ensure a
faster detection and recovery process. Check points are com-
mitted after an agreed upon time interval after which we sus-
pect that malicious transactions have either been detected or
the committed data is clean (or else the IDS would have de-
tected the set of malicious transactions). Check points are
beneficial in our proposed algorithm to reduce the space and
reading time.

After a check point has been reached, the dependency
matrix will be purged. The dependency matrix will be
purged at each check point as we assume that the proba-
bility of having a malicious transaction became very low.
Still, if a malicious transaction was detected that occurred
before the check point (worst case scenario), the log file
will be used to rebuild the dependency matrix and then go
through the same process as if no check point has oc-
curred. The rebuilt dependency matrix will have the same
characteristics as the dependency matrix that was built
before the check point. The matrix will only save the
committed transactions. The importance of the dependen-
cy matrix is in the detection process. It will be used to
discover the dependency among transactions; and hence,
classify them into affected or clean transactions. Panda
and Zhou in [8] used more than one matrix and applied
logical operations between these matrices to discover de-
pendencies. However, in our model only one matrix is
used and it shows the dependencies without any logical
operations. Complementary arrays are constructed in spe-
cial cases as explained below.

The main structure that is used in our algorithm is the
matrix. We assume that the matrix is built dynamically
along with the execution of every transaction. As transac-
tions are executed, and later committed, they will be
added to the two-dimensional matrix; thus, building the
dependency matrix. Columns of the matrix correspond to
the data items present in the database; whereas, the rows
represent the different committed transactions. Each trans-
action can either be blindly written - a transaction that
does not depend on any previously committed transaction
or a transaction that depends on previously committed
transactions. A blindly written transaction is either a clean
transaction (non-affected) or a malicious transaction (in
this case only identified by the IDS). For every

@ Springer

transaction, each data item will have a value depending
on the operations that the transaction has gone through,
which is represented as follows:

+ 0: if the data item is unmodified by a transaction.

+ 1: if the data item is blindly written by a transaction; data
from previous transactions is not needed.

* A positive transaction ID: if dataitem1 that is accessed by
Ty, is identified in the matrix with entry T, such that y<x;
this indicates that dataitem] is updated according to the
last modified value of dataiteml by n T,

* A negative transaction ID: this means that this data item
was modified based on data items read from different
transactions.

Consider a transaction Ty. To modify dataiteml, Ty needs
to read dataitem4 of transaction Ty, dataitem3 of transaction
T, and dataitem] from transaction T,, where y, w and v<x. In
this case, the entry in the matrix for that data item will be -T.
Still, =T, alone will not help us in the recovery process as it
does not show which transactions have affected it. To solve
this problem, we added a complementary array that will only
be manipulated in such cases. To illustrate, the entry of the
main matrix for dataiteml in transaction T, will have -T,.
Then, in the second array, the index will be the transaction
ID that has been affected by other transactions, T,. The index
T will be pointing to Ty, T,, and T,. This is depicted in Fig. 1.

3.1 The damage assessment algorithm

Our proposed algorithm uses two array structures: the depen-
dency matrix and the complementary array. The former stores
dependencies between transactions. The latter saves the de-
pendency between the transactions and many other previously
committed transactions. These structures, along with the set of
malicious transactions provided by the IDS, are the main ele-
ments for our proposed detection algorithm. One of the char-
acteristics of the log file and the matrix is that both are sequen-
tial. Transactions in both the log file and the dependency ma-
trix are stored according to their commitment such that there is
no transaction Tj where j<i and T; depends on T;. Whenever
recovery is required, our detection algorithm identifies the
minimum transaction ID among the set of malicious transac-
tions Typg. When the detection begins, the algorithm skips
every entry before the Tyy; since they are not affected by any
transaction in the set of malicious transactions. The Ty will
be skipped as well since we already know that this is the
malicious transaction, it needs to be deleted. This way, the
algorithm will be reducing the effort that could be used on
transactions that we know are clean.

After the row Tyy;, the matrix will be traversed row by row
and for each data item in that transaction (row), a check will be
performed to see how the data have been affected. If the entry

Peer-to-Peer Netw. Appl.

Fig.1 The dependency matrix (a),
with its complementary array (b)

isa ‘0’ or ‘1’, then this means that this data item has not been
modified in this transaction or that it is blindly written. Hence,
our algorithm will skip that column as the data item is written
cleanly and then moves to check the following columns.

Fig. 2 A flow diagram of the
damage assessment algorithm

12 3 30
T, 1 0 0 1
T, 0 1 0 0
T, 0 00 1
T, -T,0 0 0

(a)
Ty
T, Tw T,
(b)

On the other hand, positive and negative transaction IDs
show a possibility that the transaction might be affected. If the
entry contains a positive transaction ID, which means that the
data item of the current transaction is dependent on the

@ Springer

Peer-to-Peer Netw. Appl.

Receive the set of malicious transactions which should be sent by the intrusion detection system
Select the minimum transaction ID among the malicious transactions
For every transaction in the matrix starting from the minimum malicious transaction ID to the end of the matrix

For each data item
If (entry == 0) then
Move to the next row
Else if (entry == 1) then
Move to the next row

Else if (entry < 0 && entry belongs to malicious transactions)
Add the current transaction to the set of affected transactions

Move to the next row

Else if (entry > 0 && entry does not belong to malicious transactions)
For every transaction in the affected transactions set

If (entry ==

T aﬁéct@d)

Add entry to affected transactions set
Move to the next row

Else if (entry < 0)

Search ComplementaryArray for key == entry
For each element in ComplementaryArray [entry]
If(element belongs to malicious transactions)

Add the current transaction to the set of affected
transactions
Move to the next row

Else if (element belongs to the set of affected transactions)

Fig. 3 The damage assessment algorithm

transaction, with the transaction ID present in that entry, then
we need to check if this transaction ID belongs to the affected
or malicious transaction. For example, let us consider the fol-
lowing case: upon searching the matrix reaching transaction
T;, and upon checking if this transaction is affected, we check

Fig. 4 A flow diagram of the
recovery algorithm

Add the current transaction to the set of affected
transactions
Move to the next row

each data item in the matrix. We consider the case where for
that row, data item x has the following ID, Tj. This shows that
to write data item X in transaction T; the transaction read data
from Tj. Hence, we search among the set of malicious trans-
actions to check if T; belongs to i, if it does then we add T; to

Transactions from
damage assess|

-

For first

For first
Malicious

transaction

@ Springer

Read log file and

Peer-to-Peer Netw. Appl.

the set of affected transactions. Then, our algorithm will not
continue searching the other data items and skip to the trans-
action following T;. If T; does not belong to the set of mali-
cious transactions, we check if it belongs to the set of affected
transactions. If T; belongs to the set of affected transactions
then we have indirect dependency and T; should be added to
the affected transactions. The algorithm checks the other data
items for that transaction. The best case scenario is when the
first data item in that row is affected. Hence, the transaction
would be added to the set of affected transactions and the other
data items will be skipped.

The last case is having a negative transaction ID. This
shows that the transaction we are currently looking at has been
affected by more than one previously committed transaction.
In this case, we will directly allocate the index of this transac-
tion in the complimentary array to retrieve the content corre-
sponding to the entry that we are currently checking.
Consequently, the retrieved content will then be tested to
check if any of this content has the same ID as any of the
transaction IDs that are classified as malicious or affected
transactions. Similarly, the steps performed in this case are
the same as in the previous case; i.e., if a malicious or affected
transaction was among the transactions that this row
(transaction) depends on, then we will add it to the affected
set and skip to the next row. The flow of damage assessment
algorithm is depicted in Fig. 2 and its steps are summarized in
Fig. 3.

3.2 The recovery algorithm

After the completion of the damage assessment algo-
rithm, the recovery algorithm will be triggered by re-
ceiving the set of malicious and affected transactions.
The malicious transactions will be deleted, while the
affected transactions will be recovered to act as if no
malicious transactions have occurred. The algorithm will
run until we reach a stable state in the database - a state
where all of the data is consistent (i.e., no malicious
transaction exits and any affected transactions are recov-
ered). The sets of malicious and affected transactions
will be traversed and for each transaction we will go
back and check what information the log file has about
it in order to proceed with the proper update. The flow
of the algorithm is depicted in Fig. 4, and its steps in
Fig. 5.

Fig. 5 The recovery algorithm

Table 1 Parameters used in I/O calculations

Parameters Values
Space taken by a read operation of a transaction in the log 40 bytes
Space taken by write operation of a transaction in the log 60 bytes
Page Size 2 KB
Page I/O Time (in milliseconds) 15

3.3 An example

Consider a database for a company that contains information
about the following:

e Doctor: a unique identification number for each Doctor
(DID), first name (FName), last name (LName), date of
birth (EDOB), and profession (Prof).

+ Patient: a unique identification number for each patient
(PID), patient name (PName) and the Patient phone num-
ber (PNumber).

» Categories: a unique identification number for each cate-
gory (CatID) and category name (CatName)

* Products: a unique identification number for each
product (ProID), product name (ProName), price
(PP) and category which classifies each product in a
category (CatID).

* Visit: a unique identification number for each visit (VID),
the patient who did this visit belongs (PID), doctor that
saw the patient (DID), reason the patient visited (Reason),
the product that the customer bought (ProID), the quantity
(QO), total (TO) and date (date).

Let the dependency matrix that corresponds to this data-
base be called M. This matrix will be made up of 22 columns
(i.e., DID, FName, LName, EDOB, Prof, PID, PName,
PNumber, CatID, CatName, ProlD, ProName, PP, CatID,
VID, DID, PID, Reason, ProID, QO, TO and date). As trans-
action T/=Doctor (“1”, “Kim”, “Stewart”, “1980-11-02",
“Cardiologist”) is committed, a new entry in M will be creat-
ed with the following attributes M[1][]={01, 01, 01, 01, 01,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00,
00}. The first five columns will be manipulated by “01” be-
cause they will be blindly written by transaction T1. There is
no need to look at any previously committed transaction to be
able to write the values for T1. As for the rest of the columns,

Receive the sets of malicious and affected transactions (transaction IDs that need to be recovered)

Read the file into an array

For each transaction in the affected transaction set
Retrieve the log file information for that transaction
Update the database accordingly

For each transaction in the malicious transaction set
Retrieve the log file information for that transaction
Delete the transaction

@ Springer

Peer-to-Peer Netw. Appl.

they will be manipulated by “00” because transaction T1
wrote into the columns that belong to the Doctor table where
as the other data items are left unmodified. Consider 72=
Patient (“17, “John”, “001718668009”) which will also be
committed as follows M[2][]= {00, 00, 00, 00, 00, 01, 01, 01,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}. If John
visits the Cardiologist Dr Stewart then a new transaction will

be committed in the DB, however this newly committed trans-
action will is dependent on the the . The visit is dependent on
the presence of a Doctor and a Patient. Hence, 73=Visit (“1”,
“17,%1”, “Regular Checkup”, “”, “”,*”,“2014-12-03”) will
result in a new entry in the matrix as follows M[3][]= {00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 01, T2, T1, 01,
00, 00, 00, 01}

D F L E P P P P C C

1 N N D R 1 N N 4 A

D 4 A o O D 4 U T T

M M B F M M N

E E E D A
M

E
T o1 07 0/ 01 01 00 00 00 00 00
2 00 00 00 00 00 0 01 0l 00 00
3 00 00 00 00 00 00 00 00 00 00

P P C V. D P R P 0 T D
R P A 1 1 1 E R o 0O 4
o T D D D A o T
N 1 N 1 E
A D o D

M N

E

00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 00 01 T2 TI 01 00 00 00 01

3.4 Complexity analysis

In this section we will discuss the best and worst case scenar-
ios of our algorithm. The best-case scenario is when the intru-
sion detection system sends the malicious transaction soon
after it is identified. In such a case, our proposed algorithm
will not require scanning of any matrices or log as usually our
algorithm starts searching the dependency matrix from the
row following the row associated with the malicious transac-
tion. Thus, our algorithm will be O(/) in the best case.

We consider the worst-case scenario to be the case when a
malicious transaction is detected to be in the first row of the
dependency matrix and the checkpoint time is about to elapse.
Hence, having the maximum number of rows to traverse.
Moreover, the dependency between the transaction and the
affected and malicious transactions is not discovered until
the last data item. Thus, the algorithm will have to traverse
the entire matrix, not skipping any row or column. Usually,
our algorithm traverses the matrix row by row and for each

Fig. 6 Performance of the
damage assessment algorithm
based on different attacker IDs

Time in p second

row (transaction) the algorithm traverses each data item
(column) to check if there is a dependency with a malicious
transaction. If a column of any data item is found to be depen-
dent on a malicious transaction, then the algorithm sets this
transaction as affected and stops traversing the other data
items. Thus, the worst case scenario is when the dependency
is always found in the last data item. In this case, the algorithm
will be of O(nm?*) where n is the total number of committed
transactions and m is the total number of data items.

4 Experimental results

We tested the performance of our algorithms by means of a
simulated environment. The simulated environment develops
a log that holds all the committed transactions, each transac-
tion has a unique sequential ID. Our model requires the pres-
ence of a log file along with a dependency matrix to be able to
perform each of the detection and recovery processes. The

Damage Assessment

e TiMN @

100 200 300 400 500 600 700 800 9S00 1000

@ Springer

Attacker ID

Peer-to-Peer Netw. Appl.

Fig. 7 Performance comparison 1800

of various damage assessment

algorithms X608

1400
1200
1000

Access Time in (ms)

simulated environment generates them before starting the ex-
ecution of the algorithms. Transactions in our database are
generated randomly.

We used the “Northwind Database” [28] in our experimen-
tal results. This database is provided as a template in the
Microsoft Access Office. The database consists of 5000 attri-
butes and 1081 records. The data was then converted to .sql
format and added to MySQL. A connection is opened from
our code to the SQL server that contains our Database.
Consequently, our code contains SQL queries similar to re-
commit the query to recover from an attack. The server that
was used in our stimulation is WampServer 2.0 with the fol-
lowing configuration: Apache Version 2.2.11, PHP Version
5.3.0 and MySQL Version 5.1.36. The simulated environment
was developed on a system with an Intel® Core™ 2 Duo CPU
P8600 at 2.40 GHz and running under approximately
2.39 GHz, with a 2 GB RAM.

4.1 Performance of the damage assessment algorithm

The total page 1/O time calculation is performed by checking
the total number of pages read during damage assessment and

Recovery Process

0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

Recovery time ir usccond

5 10 15 20 25

Number of transactions to be recovered

Fig. 8 Performance of recovery algorithm based on different numbers of
affected transactions

Damage Assesment

M Traditional

m Traditional Clustered

50

¥ Hybrid Cluster (data
dependency)

I . W Matrices
100 15

0

Attacker ID

then multiplying this number with the time required to read
each page. In order to calculate the total I/O time for tradition-
al non-clustered algorithms, the counting procedure considers
the bytes scanned from the starting point of attack till the end
of the traditional log. For traditional clustered based on data
dependency, the bytes scanned from the starting point of the
attacking transaction till the end of the cluster. The parameters
used are shown in Table 1.

As we can see from Fig. 6, the time needed for damage
assessment decreases as the attacker ID increases. The attack-
er ID represents the transaction ID that has been affected.
When the attacker ID is 100, the damage assessment algo-
rithm has to traverse 981 rows to find every affected transac-
tion. Unlike when the attacker ID is 1000 where the damage
assessment algorithm has to traverse and check only 81 rows.
The time decreases from around 18.13 to 5.8 p s. As the
algorithm has to traverse less number of rows, the time and
effort needed for damage assessment will also decrease. The
sooner the attack is detected, the better and the faster the dam-
age assessment; this shows that our algorithm is capable of
decreasing the time needed for damage assessment; and
hence, less denial of service.

Time
25

20 ‘\
15

100 200 300 400 500 600 700 800 900 1000

—Time

Total time in p seconds

Attacker ID

Fig. 9 Time taken for different attacker IDs to go through our recovery
model

@ Springer

Peer-to-Peer Netw. Appl.

1800
1600
1400
1200
1000

Fig. 10 Performance comparison
of the various recovery
algorithms

Access Time (ms)

400
200

Figure 7 portrays a performance comparison between our
algorithm and three other algorithms (traditional, traditional
clustered and hybrid cluster algorithms). The four algorithms
were tested in the same environment, where we have a database
of 500 transactions with 5000 attributes, 2000 records, in which
only 45 data items are accessed as a maximum in a transaction.
The figure clearly portrays that our algorithm outperforms the
rest of the algorithms. The fact that we are using matrices makes
our algorithm work efficiently, especially that matrices are eas-
ily indexed. Unlike other algorithms, we only use one matrix
that does not require any logical operations in the damage as-
sessment phase. Moreover, our algorithm does not need to read
the entire log file to cluster transactions according to dependen-
cy. The effort needed by other algorithms to read the log file is
not needed in our algorithm. Hence, these characteristics im-
prove our algorithm compared to previous algorithms.

The comparison analysis, shown in Fig. 7, confirms that our
model accesses fewer page I/Os during damage assessment,
thus improving performance. To construct the graph depicted
above, the attacker ID was varied from between 50 to 150.

4.2 Performance of the recovery algorithm

Transactions are generated randomly. The average transaction
time is 2 ms. After the damage assessment phase and after we
have saved all of the malicious and affected transactions, we
can move to the second phase, recovery. In this phase, we
recover every transaction that has been affected by malicious
transactions and delete every malicious transaction. Figure 8
shows the time taken by our algorithm to recover the set of
malicious and affected transactions. As we can see when the
number of transactions that need recovery increases, the time
required for this recovery increases as well. Figure 9 shows
the result for a database that constitutes of 500 transactions,
5000 columns, and 1081 rows. A transaction may access at
most 45 columns.

@ Springer

Recovery Analysis

II I,
100 150

Attacker ID

= Traditional
= Traditivnal Clusterec

Hybrid Cluster (data
dependency)

W Hybrid Cluster (fixed size)

= Matrices

Figure 9 portrays the time taken by our model to build the
matrix, and to detect and recover from an attack. To obtain the
results below we used a database composed of 5000 columns
and 1081 transactions. It can be inferred from the figure below
that the total time taken by our algorithm to detect and recov-
ery from a malicious attack is less than the time taken to
recover or detect using other models. In our model, the worst
case scenario is when the malicious transaction is recovered
after we have reached a check point. In such a case we need to
rebuild the matrix and then start our assessment.

Figure 10 shows a comparison between our model and four
other algorithms (traditional, traditional clustered, hybrid clus-
tered with data dependency, and the hybrid cluster with fixed
size). The results show that in all cases, our algorithm is more
efficient than any other. The reason of this improvement is the
use of matrices. Moreover, the log file during recovery in our
algorithm is converted to look like an array which makes the
indexing easier and faster. Rather than reading the entire log
file whenever we want to find a transaction that needs recov-
ery, we just index its position in the array. The time taken by
other algorithms to read the log file is not needed in our algo-
rithm. Our algorithm only requires the effort to convert the log
file to an array and this is done only once at the beginning of
the recovery algorithm.

5 Conclusion

After the failure of prevention mechanisms and the latency in
the detection algorithm, we need a tool to recover from the
malicious attack as soon as it is detected. In this paper, we
presented a new approach for damage assessment and recov-
ery that depends on matrices. In our approach, the dependency
between transactions is saved in a matrix that will be formed
as transactions are being committed. The matrix is then used
to assess the affected transactions based on the set of malicious
transactions that were provided by the IDS. Consequently, our

Peer-to-Peer Netw. Appl.

recovery algorithm would treat all malicious and affected
transactions. We tested our model and compared it with dif-
ferent approaches. The comparison results confirm that our
approach is faster and more efficient than previously proposed
models (traditional, traditional clustering, hybrid clustering
according to data dependency and according to fixed size).
As for future work, we will consider the space issue. Our
algorithm requires the presence of a matrix along with a com-
plementary structure to save transactions it depends on; this
requires space that could be diminished.

References

1. Libicki M, Fellow S (1995) What is information warfare? United
States Government Printing, United States
2. ChuJ, Zihui G, Huber R, Ji P, Yates J, Yu Y (2012) ALERT-ID:
Analyse Logs of the Network Element in Real Time for Intrusion
Detection. Proceedings of the 15th international conference on
Research in Attacks, Intrusions, and Defences
3. KurraK, Panda B, Li W, Hu Y (2015) An Agent based approach to
perform damage assessment and recovery efficiently after a cyber
attack to ensure E-government database security. Proceedings of the
48th Hawaii International Conference on System Sciences
4. Hutchinsn W (2006) Information warfare and deception. Inf Sci 9:
213-223
5. HuaD, Xiaolin Q, Guineng Z, Ziyue L (2011) SQRM: an effective
solution to suspicious users in database. DBKDA 2011: The Third
International Conference on Advances in Databases, Knowledge,
and Data Applications, St. Maarten, The Netherlands Antilles
6. Kim T, Wang X, Zeldovich N, Kaashoek M (2010) Intrusion recov-
ery using selective re-execution. Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI "10), pp. 89-104
7. Chakraborty A, Majumdar A, Sural S (2010) A column de-
pendency based approach for static and dynamic recovery of
databases from malicious transactions. Int J Inf Secur (ACM) 9(1):
51-67
8. Panda B, Zhou J (2003) Database damage assessment using a ma-
trix based approach: An intrusion response system. Proceedings of
the 7th International Database Engineering and Applications
Symposium (IDEAS 2003), pp. 336-341
9. Panda B, Perrizo W Haraty RA (1994) Secure transaction manage-
ment and query processing in multilevel secure database systems.
Proceedings of the Symposium on Applied Computing. Phoenix,
AZ, pp. 363-368
10. Ning P, Jajodia S (2004) Intrusion detection techniques. Internet
Encycl 2:355-368
11. Megan B (1999) Information warfare: What and how? Carnegie
Mellon School of Computer Science. Retrieved from http:/www.
cs.cmu.edu/~burnsm/InfoWarfare html
12. Haeni R (1997) Information warfare an introduction. The George
Washington University, Washington DC
13. Panda B, Haque KA (2002) Extended data dependency approach: a
robust way of rebuilding database. Proceedings of the 2002 ACM
Symposium on Applied Computing, pp. 445452
14. Panda B, Gordano J (1998) Reconstructing the database after elec-
tronic attacks. Proceedings of the IFIP TC11 WG 11.3 Twelfth
International Working Conference on Database Security XII:
Status and Prospects

15. Ammann P, Jajodia S, Liu P (2002) Recovery from malicious trans-
actions. IEEE Trans Knowl Data Eng 14(5):1167-1185

16. Fu G, Zhu H, Feng Y, Zhu Y, Shi J, Chen M (2008) Fine grained
transaction log for data recovery in database system. Third Asia-
Pacific Trusted Infrastructure Technologies Conference (IEEE),
Washington, DC, USA

17. Lomet D, Vagena Z, Barga R (2006) Recovery from “Bad” user
transactions. SIGMOD, June 27-29, Chicago, Illinois, USA

18. Ragothaman P, Panda B (2002) Analyzing transaction logs for ef-
fective damage assessment. Proceedings of the 16th Annual IFPI
WG 11.3 Working Conference on Database and Application
Security, pp. 121-134

19. Haraty RA, Zeitunlian A (2007) Damage assessment and recovery
from malicious transactions using data dependency. ISESCO J Sci
Technol 3(4):43-50

20. Zhou J, Panda B, Hu Y (2004) Succinct and fast accessible data
structures for database damage assessment. In: Gosh R, Mohanty H
(eds) Distributed computing and internet technology. Springer,
Berlin, pp 111-119

21. Zhou J, Panda B (2005) A log independent distributed database
damage assessment model. Proceedings of the 2005 L.E.
Workshop on Information Assurance and Security, pp. 302-309

22. Xie M, Zhu H, Feng Y, Hu G (2008) Tracking and repairing dam-
aged databases using before image table. Japan-China Joint
Workshop on Frontier of Computer Science and Technology
(IEEE), pp. 3641

23. LiuP, Yu M (2011) Damage assessment and repair in attack resilient
distributed database systems. Assoc Comput Mach (ACM) 33(1):
96-107

24. Lala C, Panda B (2001) Evaluating damage from cyber-attacks: a
model and analysis. IEEE Trans Syst Man Cybern 31(4):
300-310

25. Ray I, McConnell R, Lunacek M, Kumar V (2004) Reducing dam-
age assessment latency in survivable databases. In: Howard W,
Lachlan M (eds) Key technologies for data management.
Springer, Berlin, pp 106-111

26. Gray J, Reuter A (1993) Transaction processing concepts and tech-
niques. Morgan Kaufmann, San Francisco

27. Bemnstein P, Hadzilacos V, Goodman N (1987) Concurrency control
and recovery in database systems. Addison-Wesley, Massachusetts

28. Microsoft Corporation — Northwind and Pubs Sample Databases
for SQL Server 2000 (2015) http://www.microsoft.com/en-us/
download/details.aspx?id=23654. Retrieved on 10 Mar 2015

Ramzi A. Haraty is an associate
professor of Computer Science in
the Department of Computer Sci-
ence and Mathematics at the Leb-
anese American University in
Beirut, Lebanon. He serves as
the program administrator for the
Middle East Program Initiative’s
(MEPI) Leaders for Democracy
Fellowship program. He is also
the internship coordinator for
MEPI’s Tomorrow’s Leader pro-
gram. He received his B.S. and
M.S. degrees in Computer Sci-
ence from Minnesota State Uni-
versity - Mankato, Minnesota, and his Ph.D. in Computer Science from
North Dakota State University - Fargo, North Dakota. His research inter-
ests include database management systems, artificial intelligence, and
multilevel secure systems engineering. He has well over 110 books, book
chapters, journal and conference paper publications. He supervised over

@ Springer

http://www.cs.cmu.edu/%7Eburnsm/InfoWarfare.html
http://www.cs.cmu.edu/%7Eburnsm/InfoWarfare.html
http://www.microsoft.com/en-us/download/details.aspx?id=23654
http://www.microsoft.com/en-us/download/details.aspx?id=23654

Peer-to-Peer Netw. Appl.

110 dissertations, theses and capstone projects. He is a member of the
Association of Computing Machinery, Institute of Electronics, Informa-
tion and Communication Engineers, and the International Society for

Computers and Their Applications.

@ Springer

Mirna Zbib is currently a Quality
Control Engineer at Murex, Leb-
anon. She received her B.S. de-
gree in Computer Science from
the Lebanese University, Beirut —
Lebanon, and her M.S. degree in
Computer Science from the Leba-
nese American University, Beirut
- Lebanon. Her research interests
include database management
systems and information security.

Dr. Md. Mehedi Masud received
his PhD in Computer Science
from the University of Ottawa,
Canada. He is an associate Pro-
fessor at the Department of
Computer Science, Taif Univer-
sity, KSA. His research interests
include issues related to P2P and
networked data management,
query processing and optimiza-
tion, eHealth, and information
security. He has published sever-
al research papers at international
journals and conferences. He has
served as a member of the tech-
nical committees of several international conferences and workshops.
He is on the editorial board of some journals including Journal of
Internet and Information Systems (JIIS), Journal of Engineering and
Computer Innovations, and Journal of Software (JWS). He served as
a guest editor for Journal of Computer Science and Information Science
(ComSIS).

	Data damage assessment and recovery algorithm from malicious attacks in healthcare data sharing systems
	Abstract
	Introduction
	Literature review
	The proposed approach
	The damage assessment algorithm
	The recovery algorithm
	An example
	Complexity analysis

	Experimental results
	Performance of the damage assessment algorithm
	Performance of the recovery algorithm

	Conclusion
	References

